Т.к. около четырехугольника описана окружность, все углы, вершины которых лежат на ней, -вписанные. Вписанные углы, которые опираются на одну дугу, равны; равны и хорды, которые стягивают равные дуги.
Угол РМК опирается на дугу РК, и угол КТР опираются на дугу КР, следовательно они равны. Но им равен и угол РТМ , следовательно, равны хорды КР=РМ=16.
Примем АР=х. Тогда ТР=ТА+х=24+х
Рассмотрим ∆ ТКР и АКР. Они имеют по два равных угла, следовательно, подобны. Из их подобия следует отношение ТР:КР=КР:АР ⇒
(24+х):16=16:х
Из пропорции получаем 14х+х²=256 ⇒ х²+24х-256. Решив квадратное уравнение находим х₁=8; х₂=-32 ( не подходит).
ответ: АР=8
Объяснение (подробно):
ТР - биссектриса ⇒ ∠КТР=∠РТМ.
Т.к. около четырехугольника описана окружность, все углы, вершины которых лежат на ней, -вписанные. Вписанные углы, которые опираются на одну дугу, равны; равны и хорды, которые стягивают равные дуги.
Угол РМК опирается на дугу РК, и угол КТР опираются на дугу КР, следовательно они равны. Но им равен и угол РТМ , следовательно, равны хорды КР=РМ=16.
Примем АР=х. Тогда ТР=ТА+х=24+х
Рассмотрим ∆ ТКР и АКР. Они имеют по два равных угла, следовательно, подобны. Из их подобия следует отношение ТР:КР=КР:АР ⇒
(24+х):16=16:х
Из пропорции получаем 14х+х²=256 ⇒ х²+24х-256. Решив квадратное уравнение находим х₁=8; х₂=-32 ( не подходит).
АР=х=8.
Відповідь:
A1C и DB равен 90°.
Пояснення:
Пусть дан куб ABCDА1B1C1D1, А1С — диагональ куба; DB — диагональ грани куба.
Введем прямоугольную систему координат. С началом координат в т. D и осями, направленными вдоль ребер ОА, ОВ, ОС. Обозначим сторону куба через а.
https://ru-static.z-dn.net/files/db8/7fabd2e163d548ee435973a4d2fc01c5.png
Тогда
1.
https://ru-static.z-dn.net/files/d03/960059a78aaeb368ff09035647522aff.png
2.
https://ru-static.z-dn.net/files/d84/f0e867a68ec10485951a3ce407b94813.png
3.
https://ru-static.z-dn.net/files/d65/90661f99b8c5653eccbb98e37e38d02e.png
Следовательно,
https://ru-static.z-dn.net/files/d73/59578781fa9cf36028faf845653e9834.png
соответственно угол между прямыми
A1C и DB равен 90°.