)дан равнобедренный треугольник авс с основанием ас. на сторонах ав,вс,ас отмечены точки d,e,p соответственно так,что отрезки ae и dp имеют общую середину. докажите, что угол dep=углу bca
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. В нашем случае АЕ и DP - диагонали четырехугольника АDEP. Следовательно, этот четырехугольник - паоаллелограмм и его противоположные углы равны. То есть <DEP=<DAP. Но <DAP=<BCA, как углы при основании равнобедренного треугольника АВС. Значит <DEP=<BCA, сто и требовалось доказать.
В нашем случае АЕ и DP - диагонали четырехугольника АDEP. Следовательно, этот четырехугольник - паоаллелограмм и его противоположные углы равны. То есть <DEP=<DAP.
Но <DAP=<BCA, как углы при основании равнобедренного треугольника АВС. Значит <DEP=<BCA, сто и требовалось доказать.