Дан равнобедренный треугольник АВС с основанием АС = 4. ВН – высота треугольника, равная 4. Точка О является серединой ВН. Введите систему координат с центром в точке Н и осями ОХ – НС, ОУ – НВ. Найдите координаты точки пересечения прямых АО и ВС. Найдите длину отрезка ВТ. Где Т точка пересечения прямых АО и ВС.
построем рисунок, в треугольнике ВСD: ВС=СD (т.к. шестиугольник правильный), угол равен 120 градусов, (по формуле для нахлждения угла в правильном многоугольнике а=180(n-2)/n), проведһм перпендикуляр СН, угол ВHC = (180-120)/2=30 (т.к. треугольник равнобедренный, углы при основании равны) следовательно, СН=0,5ВС = корень из 48 по полам=корень из двенадцати (после преобразования)
теперь ВН = (по теореме пифагора) корень из (48-12) = корень из 36 = 6
ВН равно HD (т.к. в равнобедренном треугольнике высота равна медиане) следовательно ВD=2BH = 6*2 = 12
Как то так!
10)
1. AO=OK (по условию)
2. OC - общая сторона
3. т.к.
углы АОВ и АОС - смежные АОС= 180 - АОВ
углы КОВ и КОС - смежные КОС = 180 - КОВ
КОВ = АОВ (по условию) значит
АОС = 180 - АОВ = 180 - КОВ = КОС
4. треугольники АОС и КОС равны по двух сторонам и углу между ними
9)Треугольники АВК и МКС равны по двум сторонам и углу между ними (первый признак), так как ВК=МК, АК=КС (дано) и угол АКВ равен углу СКМ, как вертикальные.
8)Рассмотрим ΔAOK и ΔBOC : СО=ОА по условию,ВО=ОК по условию,∠СОВ=∠КОА как вертикальные. Значит ΔAOK = ΔBOC по первому признаку равенства треугольников :"Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны"
5)по 1 признаку
3)треугольник АЕО =ВКС т.к
1) АЕ=СК (по условию)
2) ЕО=СВ (по условию)
3) угол АОЕ=ВСК (по условию)
2)2.
Рассмотрим ∆CBO и ∆AKO:
KO=CO; AO=BO; ∠AOK=∠BOC.
∆CBO = ∆AKO по двум сторонам и углу между ними.
1)1.
Рассмотрим ∆ABC и ∆AKC:
AC - общая; BC=KC; ∠ACK=∠ACB.
∆ABC = ∆AKC по двум сторонам и углу между ними.
Объяснение: