Дан равнобедренный треугольник ABC. Радиус OA его описанной окружности лежит вне треугольника и образует с основанием AC угол OAC, равный 20∘. Найдите угол BAC. РИСУНКА НЕТ
1. Прямые называют перпендикулярными, если они пересекаются под прямым углом (пример ниже).
2. Через одну точку на данную прямую можно опустить один перпендикуляр и только один. Если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
3. Градусная мера прямого угла = 90°.
4. Перпендикуляр — отрезок прямой, перпендикулярной данной, имеющий одним из своих концов точку их пересечения.
5. Наклонной, проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.
6. Из точки А к прямой можно провести бесконечно много наклонных.
1. Прямые называют перпендикулярными, если они пересекаются под прямым углом (пример ниже).
2. Через одну точку на данную прямую можно опустить один перпендикуляр и только один. Если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
3. Градусная мера прямого угла = 90°.
4. Перпендикуляр — отрезок прямой, перпендикулярной данной, имеющий одним из своих концов точку их пересечения.
5. Наклонной, проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.
6. Из точки А к прямой можно провести бесконечно много наклонных.
1) а=12см, с=13см,
b= \sqrt{ c^{2}- a^{2} } =5cmb=
c
2
−a
2
=5cm sin \alpha = \frac{12}{13}sinα=
13
12
2) c=40cm \alpha =30*α=30∗ , следовательно а=1/2с=20см
b= \sqrt{ c^{2} - a^{2} } = \sqrt{ 40^{2}- 20^{2} } =20 \sqrt{3}b=
c
2
−a
2
=
40
2
−20
2
=20
3
3)\alpha =45α=45 b=4cm
\alpha =45α=45 следовательно \beta =45β=45 и а=в=4см , c= \sqrt{2 a^{2} } = \sqrt{32} =4 \sqrt{2}c=
2a
2
=
32
=4
2
4)\alpha =60α=60 \beta =30β=30 b=5cm, значит c=2в=10см,
a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 5^{2} } =5 \sqrt{3} cma=
c
2
−b
2
=
10
2
−5
2
=5
3
cm
4)c= 10 дм, b= 6 дм. a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 6^{2} } =8dma=
c
2
−b
2
=
10
2
−6
2
=8dm
sin \alpha =4/5sinα=4/5