Дан прямоугольный треугольник АВС с прямым углом А. Известно, что сторона BC=18см ,∠B=45 0 Найдите высоту, проведенную из вершины прямого угла к гипотенузе.
9. треугольник sop = треугольнику rop по стороне и прилежащим к ней углам.
т.к. сторона ор общая, угол rpo=spo, rop=sop.
10.—
11. kmp=kpn
по двум сторонам и углу между ними.
т.к кр общая сторона. км=kp по условию,кмр=ркn.
12.авс=адс по трём сторонам.
т.к.ас общая сторона
ав=сд,ад=св.
13.асд=сдв по стороне и двум прилежащим к ней углам.
т.к. сд общая сторона
асд=дсв
адс=сдв.
14.rpq=rqs по стороне и двум прилежащим к ней углам.т.к.prq=sqrpqr=qrs rqобщая сторона.15.авд=дсв по сторонам и двум углам.т.к. адв=сдвавд=свддв общая сторона.16. ктм=stp по двум сторонам и углу между ними.ktm=stp т.к. вертикальные углыkt=tpmt=ts
Прямая ав ║ пл. scd, т.к. ав║cd. поэтому расстояние oт т. а до плоскости scd равно расстоянию от любой точки прямой ав до этой плоскости, в том числе и от точки м - середины отрезка ав, до плоскоти scd. δscd: проведём медиану sn , sn также высота δscd, sn⊥cd. δsmn - равнобедренный, sm=sn как медианы равных треугольников sab и scd. mh - высота δsmn , mh⊥sn . cd⊥sn и cd⊥mn , sn и mn пересекаются, принадлежат пл. smn ⇒ cd⊥ плоскости smn ⇒ cd⊥ mh , лежащей в пл. smn . mh - перпендикуляр к плоскости scd. значит, mh - расстояние от ав до пл. scd . точка о - центр основания авсd. δaos - прямоугольный:
9. треугольник sop = треугольнику rop по стороне и прилежащим к ней углам.
т.к. сторона ор общая, угол rpo=spo, rop=sop.
10.—
11. kmp=kpn
по двум сторонам и углу между ними.
т.к кр общая сторона. км=kp по условию,кмр=ркn.
12.авс=адс по трём сторонам.
т.к.ас общая сторона
ав=сд,ад=св.
13.асд=сдв по стороне и двум прилежащим к ней углам.
т.к. сд общая сторона
асд=дсв
адс=сдв.
14.rpq=rqs по стороне и двум прилежащим к ней углам.т.к.prq=sqrpqr=qrs rqобщая сторона.15.авд=дсв по сторонам и двум углам.т.к. адв=сдвавд=свддв общая сторона.16. ктм=stp по двум сторонам и углу между ними.ktm=stp т.к. вертикальные углыkt=tpmt=ts
δscd: проведём медиану sn , sn также высота δscd, sn⊥cd.
δsmn - равнобедренный, sm=sn как медианы равных треугольников sab и scd.
mh - высота δsmn , mh⊥sn .
cd⊥sn и cd⊥mn , sn и mn пересекаются, принадлежат пл. smn ⇒
cd⊥ плоскости smn ⇒ cd⊥ mh , лежащей в пл. smn .
mh - перпендикуляр к плоскости scd.
значит, mh - расстояние от ав до пл. scd .
точка о - центр основания авсd.
δaos - прямоугольный: