Дан прямоугольный параллелепипед abcda1b1c1d1, ab=3, bc=2, bb1=4. задайте прямоугольную систему координат оxyz и определите сумму координат точки пересечения диагоналей параллелепипеда.
Угол АДВ=180-60=120 Треугольник АВД-равнобедренный,т.к угол ABD=DAB (у равнобедренного треугольника углы при основании равны). 3. Угол DBC=180-(60+60)=60. Значит треугольник BDC- равносторонний( у равносторон. треугольника все углы равны 60). Следовательно CD=BC=BD=AD=5. 4.AC=AD+DC AC=5+5=10 5. DH-расстояние от точки D до AB,Значит угол DHC равен 90 (расстояние от точки до прямой- перпендикуляр от точки до прямой). 6. В треугольнике DHC, DH-катет лежащий против угла в 30 градусов. Значит он равен половине гипотенузы. DH= 0.5*AD DH=0.5*5=2.5 ответ:10; 2,5
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Треугольник АВД-равнобедренный,т.к угол ABD=DAB (у равнобедренного треугольника углы при основании равны).
3. Угол DBC=180-(60+60)=60. Значит треугольник BDC- равносторонний( у равносторон. треугольника все углы равны 60). Следовательно CD=BC=BD=AD=5.
4.AC=AD+DC
AC=5+5=10
5. DH-расстояние от точки D до AB,Значит угол DHC равен 90 (расстояние от точки до прямой- перпендикуляр от точки до прямой).
6. В треугольнике DHC, DH-катет лежащий против угла в 30 градусов. Значит он равен половине гипотенузы. DH= 0.5*AD
DH=0.5*5=2.5
ответ:10; 2,5
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.