Дан правильный тетраэдр DABC. 1. С каких движений вершины A,B,C,D переходят соответственно в вершины A,C,B,D?
Все названные движения Ни одно из названных движений Параллельный перенос Симметрия относительно точки Симметрия относительно оси Симметрия относительно плоскости
2. С каких движений все точки грани (BCD) переходят в точки этой же грани (грань отображается на себя)?
Параллельный перенос Все названные движения Симметрия относительно плоскости Ни одно из названных движений Симметрия относительно оси Симметрия относительно точки
Объяснение:
1
<В=23 градуса
<С=90 градусов
<А=90-<В=90-23=67 градуса
2
<ВНС=90 градусов, т. к ВН - высота, тогда
<СВН=90-<ВСН=90-54=36 градусов
3
Углы равностороннего тр-ка равны:
180:3=60 градусов
4
<B=180-(A+<C)=180-(50+35)=95 градусов
<ВМН=180-(<В+<ВНМ)=180-(95+35)=50 градусов
<НМА=180-<ВМН=180-50=130 градусов т. к смежные
5
Тр-к ВDC - равнобедренный, т. к <С=<ВDC=
=60 градусов
<СВD=180-(<C+<BDC)=180-(60+60)=60 градусов, значит тр-кВDC-равносторонний
ВD=DC=BC
<ADB=180-<BDC=180-60=120 гродусов
Тр-к АВD:
<А=180-(АDB+ABD)=
=180-(120+30)=30 градусов, значит тр-к равнобедренный :
АD=BD, a BD=BC, значит АD=BC
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².