Отношение высот параллелограмма равно 3:4, а сумма этих высот - 63. Найди площадь параллелограмма, если его периметр равен 42.
Объяснение:
1) Пусть одна часть высоты х ед, тогда большая высота 4х ед , меньшая высота 3х ед. Сумма длин высот 63=4х+3х ⇒х=9.
Тогда большая высота 4*9=36 (ед) , меньшая 27 ед.
2) Р(параллелограмма)= 42 ед, полупериметр 21 ед.
Найдем стороны параллелограмма.
Пусть меньшая сторона у ед, тогда большая (21-у) ед.
Значение площади не изменится если искать площадь по разным основаниям S=a*h :
S=y*36 или S=(21-y)*27 ⇒ 36y= (21-y)*27 , 63y=21*27 ,y=9.
S=9*36=324(ед²).
Дано:
ДС=СВ Док-во:
АС=СЕ 1. Рассм. АВС и ЕСД:
Док-ть: 1)АС=СЕ
АВС=ЕСД 2)ДС=СВ
3)<АСБ=<ЕСД(вертик.)
АВС=ЕСД ( по 1 признаку)
2.В равных треугольниках, напротив
равных углов, лежат равные стороны:
Из этого следует, что АВ=ДЕ
Отношение высот параллелограмма равно 3:4, а сумма этих высот - 63. Найди площадь параллелограмма, если его периметр равен 42.
Объяснение:
1) Пусть одна часть высоты х ед, тогда большая высота 4х ед , меньшая высота 3х ед. Сумма длин высот 63=4х+3х ⇒х=9.
Тогда большая высота 4*9=36 (ед) , меньшая 27 ед.
2) Р(параллелограмма)= 42 ед, полупериметр 21 ед.
Найдем стороны параллелограмма.
Пусть меньшая сторона у ед, тогда большая (21-у) ед.
Значение площади не изменится если искать площадь по разным основаниям S=a*h :
S=y*36 или S=(21-y)*27 ⇒ 36y= (21-y)*27 , 63y=21*27 ,y=9.
S=9*36=324(ед²).
Объяснение:
Дано:
ДС=СВ Док-во:
АС=СЕ 1. Рассм. АВС и ЕСД:
Док-ть: 1)АС=СЕ
АВС=ЕСД 2)ДС=СВ
3)<АСБ=<ЕСД(вертик.)
АВС=ЕСД ( по 1 признаку)
2.В равных треугольниках, напротив
равных углов, лежат равные стороны:
Из этого следует, что АВ=ДЕ