Дан квадрат ALMD .
1. Выполни параллельный перенос квадрата на вектор L D .
2. Каким образом ещё можно получить тот же результат?
Параллельным переносом на противоположный вектор
Поворотом на 180 градусов вокруг начальной точки данного вектора
Поворотом на −180 градусов вокруг конечной точки данного вектора
Симметрией относительно прямой, на которой лежит данный вектор
Симметрией относительно конечной точки данного вектора
Поворотом на 180 градусов вокруг конечной точки данного вектора
Выполненный параллельный перенос на данный вектор — единственное возможное движение
Найти площадь ривнобедренной трапеции ,если ее периметр 42 см, а основания трапеции 5 см и 17 см .
Дано:
AD || BC ; AB =CD (ABCD -равнобедренная трапеция)
AD = 17 см ; BC =5 см ;
P=AB+BC+CD+AD =42 см.
S = S(ABCD) -?
ответ: 88 см²
Объяснение:
S =(AD+BC)*h/2 =(17+5)*h/2 = 11*h , где h - высота трапеции
Проведем BE⊥ AD и CF ⊥ AD ⇒EBCF -прямоугольник
BE = CF ; ЕF =BC
ΔABE = ΔDCF (по катетам:BЕ =CF и гипотенузам: AB =DC )
⇒ AE =DF
AE +EF +FD =AD⇔ 2AE +BC =AD ⇒AE =(AD -BC)/2 =(17 -5)/2 =6 (см)
ΔABE: BE =√(AB²- AE²) =√(10² - 6²) = 8 (см)
S =11*8=88 (см²)
Объяснение:
Мы знаем что угол при основании равен 60*. Проводя высоту мы получаем прямоугольный треугольник, и отсюда следует, что второй угол равен 30°. Тогда часть большего основания, лежащего напротив этого угла, равна её половине. И с другой стороны трапеции, так как она равнобедренная, то будет то же самое.
Теперь по теореме Пифагора находим высоту:
h = √(12²-6²) = √(144-36) = √108 = 6√3. Теперь найдём всю длину большего основания:
Две части мы нашли (они равны по 6 см), а третья часть равна меньшему основанию, большее основание равно 6+6+24=36.
Находим площадь по формуле S=1/2(a+b)*h
S=1/2(24+36)*6√3=30*6√3 =180√3.