На поверхности шара выбраны точки А и В так, что АВ - 40 см, а расстояние от центра до прямой АВ равно 15см. Найдите площадь сечения шара , проведенного через точки АВ на растоянии 7 см от центра шара. *** Расстояние от центра О шара до прямой, проведенной в нем, это перпендикуляр из центра шара к этой прямой. Через прямую и точку, не лежащую на ней, можно провести плоскость. (рис.1 приложения) Плоскость, проведенная через центр круга и АВ отсекает от шара окружность, в которой АВ - хорда, расстояние из центра О до АВ - перпендикуляр ОН, который, по свойству радиуса, делит АВ пополам. Треугольник АНО - прямоугольный с катетами АН=(40:2) см и НО=15см, и гипотенузой АО=R. АО=√(400+225)=√625=25 см Радиус шара равен 25 см. Центр сечения, отстоящено от центра шара на расстоянии 7 см, это точка М. Через М и АВ можно провести плоскость, которая является окружностью с радиусом МС. (рис.2 приложения) ОМС - прямоугольный треугольник с катетами МО и МС и гипотенузой ОС=R Треугольник ОМС из Пифагоровых троек с отношением сторон 7:24:25 ( отношение катета и гипотенузы 7:25, значит, второй катет равен 24). Можно проверить по т. Пифагора МС=24 см Площадь сечения с радиусом 24 см вычислим по формуле площади круга: Ѕ=πr² Ѕ=π*24²=576 π см²
Параллельные прямые отсекают в окружности равные дуги, которые соответствуют равным хордам. Это все.
Можно объяснить, почему там равные дуги - равны накрест лежащие внутренние углы при этих параллельных (основаниях) и диагонали трапеции. Значит равны дуги, на которые они опираются.
А вписанный угол опирающийся на дугу измеряется половиной дуги, потому что его можно разделить (или дополнить) диаметром, и каждый из получившихся уголов является углом между диаметром и хордой, и соединяя центр с концом хорды, мы получаем равнобедренный треугольник, у которого 2 угола при основании равны исходному, а центральный угол будет внешним, равным их сумме, то есть центральный угол в 2 раза больше вписанного. Раз это верно для угла между любой хордой и диаметром (имеющими общий конец), то верно вообще для любого угла
***
Расстояние от центра О шара до прямой, проведенной в нем, это перпендикуляр из центра шара к этой прямой.
Через прямую и точку, не лежащую на ней, можно провести плоскость. (рис.1 приложения)
Плоскость, проведенная через центр круга и АВ отсекает от шара окружность, в которой АВ - хорда, расстояние из центра О до АВ - перпендикуляр ОН, который, по свойству радиуса, делит АВ пополам.
Треугольник АНО - прямоугольный с катетами АН=(40:2) см и НО=15см, и гипотенузой АО=R.
АО=√(400+225)=√625=25 см
Радиус шара равен 25 см.
Центр сечения, отстоящено от центра шара на расстоянии 7 см, это точка М. Через М и АВ можно провести плоскость, которая является окружностью с радиусом МС. (рис.2 приложения)
ОМС - прямоугольный треугольник с катетами МО и МС и гипотенузой ОС=R
Треугольник ОМС из Пифагоровых троек с отношением сторон 7:24:25 ( отношение катета и гипотенузы 7:25, значит, второй катет равен 24). Можно проверить по т. Пифагора МС=24 см
Площадь сечения с радиусом 24 см вычислим по формуле площади круга:
Ѕ=πr²
Ѕ=π*24²=576 π см²
Параллельные прямые отсекают в окружности равные дуги, которые соответствуют равным хордам. Это все.
Можно объяснить, почему там равные дуги - равны накрест лежащие внутренние углы при этих параллельных (основаниях) и диагонали трапеции. Значит равны дуги, на которые они опираются.
А вписанный угол опирающийся на дугу измеряется половиной дуги, потому что его можно разделить (или дополнить) диаметром, и каждый из получившихся уголов является углом между диаметром и хордой, и соединяя центр с концом хорды, мы получаем равнобедренный треугольник, у которого 2 угола при основании равны исходному, а центральный угол будет внешним, равным их сумме, то есть центральный угол в 2 раза больше вписанного. Раз это верно для угла между любой хордой и диаметром (имеющими общий конец), то верно вообще для любого угла