В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
il1234561
il1234561
25.01.2022 21:58 •  Геометрия

Дан асвd-четырёхугольник. ао-биссектрисса угла а, до-биссектриса угла д. доказать,что угол аод=1/2 (угол в+ угол с)

Показать ответ
Ответ:
egorsinitsyn9Egor
egorsinitsyn9Egor
28.03.2023 23:16
Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
0,0(0 оценок)
Ответ:
бородкин
бородкин
09.11.2021 15:28

Дано :  ΔABC  остроугольный

AK ⊥ BC ; BD  ⊥ AC ; AH =BC ,                                                                             H = AK ∩ BD  ( H - точка пересечения высот)

∠BAC  -?

ответ:    45° .

Объяснение:

Прямоугольные треугольники  HDA  и CDB равны ( третий признак равенства _ по гипотенузе и острому углу )

ΔHDA  = ΔCDB  

* * * ∠HDA = ∠BDC  = 90 °   * * *    

AH = BC  ( гипотенузы по условию )

∠AHD =∠BCD углы со взаимно перпендикулярными сторонами :  AH⊥ BC ;  HD ⊥ AC (снова  по условию) ,

следовательно AD = BD , т.е. прямоугольный треугольник  ΔADB равнобедренный  ⇒∠BAC = ∠ABC = 45° .

( ! Равенство второго  пара катетов:  HD  = CD можно использовать  при построения  правильного чертежа. )

* * * Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны  ( аналог второго признака равенства для "обычных "треугольников" )   * * *

* * * AK ⊥ BC ⇔ AH⊥ BC ; BD ⊥ AC ⇔ HD ⊥ AC )))  * * *

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота