Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)
Меньшая диагональ основания призмы (ромба) равна стороне ромба, так как в треугольнике АВD все углы по 60°. Итак, ВD=2√3. Половина большей диагонали основания - это высота правильного треугольника АВD и равна √3*а/2, где а - сторона ромба, или АО=3. Тогда АС=6см. В прямоугольном треугольнике BB'D катет BВ' лежит лежит против угла 30°. Значит B'D=2*B'B и по Пифагору 4B'B²-B'B²=BD², отсюда В'В=√(12/3)=2. Или так:В'В=BD*tg30°=2√3*(√3/3)=2. ВВ'=СС'=2. Это высота призмы. Тогда большую диагональ призмы найдем из треугольника АСС' по Пифагору: АС'=√(АС²+СС'²) или АС'=√(36+4)=2√10. ответ: большая диагональ призмы равна 2√10.
Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)
так как в треугольнике АВD все углы по 60°.
Итак, ВD=2√3.
Половина большей диагонали основания - это высота правильного треугольника АВD и равна √3*а/2, где а - сторона ромба, или АО=3.
Тогда АС=6см.
В прямоугольном треугольнике BB'D катет BВ' лежит лежит против угла 30°.
Значит B'D=2*B'B и по Пифагору 4B'B²-B'B²=BD², отсюда В'В=√(12/3)=2.
Или так:В'В=BD*tg30°=2√3*(√3/3)=2.
ВВ'=СС'=2. Это высота призмы.
Тогда большую диагональ призмы найдем из треугольника АСС' по Пифагору:
АС'=√(АС²+СС'²) или АС'=√(36+4)=2√10.
ответ: большая диагональ призмы равна 2√10.