Угол между двумя пересекающимися плоскостями (плоскостью АВСD и секущей плоскостью EАВF) равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения, не зависимо от выбора этой третьей плоскости. В нашем случае плоскости, перпендикулярные линии пересечения АВ - это грани АА1D1D и ВВ1С1С. Cледовательно надо построить угол ЕАD в грани АА1D1D, равный 60°. Для этого построим угол АРН, равный 30°, в этой грани.
Проведем циркулем дугу окружности с центром в точке А радиуса R, равного стороне куба, а на стороне куба AD отметим точку Н, которая делит сторону AD пополам. Проведя прямую НН1, перпендикулярную стороне AD до пересечения с дугой окружности, получим точку Р. Соединив точки А и Р, получим угол АРН, равный 30°, так как катет АН равен половине гипотенузы АР. Соответственно, угол РАН = 60° по сумме острых углов прямоугольного треугольника.
Проведя прямую АР до пересечения с ребром А1D1 в точке Е, получим прямую АЕ, по которой плоскость сечения пересекает грань АА1D1D.
Аналогично найдем точку F на ребре ВС1 грани ВВ1С1С. Или найдем эту точку, проведя через вершину В прямую, параллельную прямой АЕ, так как параллельные грани пересекаются секущей плоскостью по параллельным прямым.
Пусть квадрат СКМН вписан в треугольник АВС, причем точка М лежит на АВ.
Примем сторону квадрата равной х.
Тогда АК=12-х, ВН=10-х
Площадь ∆ АВС состоит из площади двух прямоугольных треугольников и площади квадрата.
S АВС=Ѕ АКМ+Ѕ МВН+Ѕ КМНС. ⇒
12•10=(12-х)•х+(10-х)•х+2х²⇒
120=22х⇒
см
————
Или:
Проведем биссектрису СМ .
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
АМ:ВМ=АС:ВС=12/10=
Откуда АВ=11 частей, и СВ:х=АВ:АМ=11/6⇒
11х=60
см
———
Можно использовать также подобие треугольников АКМ и МНВ, из чего следует
АК:МН=КМ:ВН - ответ будет, естественно, тем же.
Построение в приложении
Объяснение:
Угол между двумя пересекающимися плоскостями (плоскостью АВСD и секущей плоскостью EАВF) равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения, не зависимо от выбора этой третьей плоскости. В нашем случае плоскости, перпендикулярные линии пересечения АВ - это грани АА1D1D и ВВ1С1С. Cледовательно надо построить угол ЕАD в грани АА1D1D, равный 60°. Для этого построим угол АРН, равный 30°, в этой грани.
Проведем циркулем дугу окружности с центром в точке А радиуса R, равного стороне куба, а на стороне куба AD отметим точку Н, которая делит сторону AD пополам. Проведя прямую НН1, перпендикулярную стороне AD до пересечения с дугой окружности, получим точку Р. Соединив точки А и Р, получим угол АРН, равный 30°, так как катет АН равен половине гипотенузы АР. Соответственно, угол РАН = 60° по сумме острых углов прямоугольного треугольника.
Проведя прямую АР до пересечения с ребром А1D1 в точке Е, получим прямую АЕ, по которой плоскость сечения пересекает грань АА1D1D.
Аналогично найдем точку F на ребре ВС1 грани ВВ1С1С. Или найдем эту точку, проведя через вершину В прямую, параллельную прямой АЕ, так как параллельные грани пересекаются секущей плоскостью по параллельным прямым.
Сечение EABF - искомое сечение.