Д1. 3. В треугольнике АВС известно, что ABC = 74°. Биссек- трисы АК и CN этого треугольника пересекаются в точке I. Найдите AIC. ответ дайте в градусах
2. <ОВС = 1/2<АВС так как ВО - биссектриса, <ОСВ = 1/2<АСВ так как СО - биссектриса. <АВС = <АСВ, значит <ОВС = <ОСВ, следовательно ∆ВОС - равнобедренный по признаку равнобедренного треугольника.
Что и требовалось доказать.
5 1) 12 вроде
5 2)
1. <СВК = 1/2<АВС = 1/2 × 100° = 50° так как ВК - биссектриса
2. <СВК = <С = 50°, следовательно ∆КВС - равнобедренный по признаку равнобедренного треугольника, значит КВ = КС = 6 по свойству сторон равнобедренного треугольника
1) 3
2) Р = АВ + АС + ВС; ∆АВС - равнобедренный, следовательно АС = ВС.
Значит Р = АВ + 2АС
АС = (Р - АВ) : 2 = (28 - 10) : 2 = 18 : 2 = 9 (см)
ответ: 9 см
3) 1. <А = <В, значит ∆АВС - равнобедренный по признаку равнобедренного треугольника, следовательно АС = ВС
2. пусть х - коэффициент пропорциональности, тогда АВ = 5х, АС = ВС = 2х. Зная, что периметр треугольника 36 см, составляем уравнение:
5х + 2х + 2х = 36
9х = 36
х = 4
АС = 5х = 5 × 4 = 20 (см)
ответ: 20 см
4) 1.∆АВС - равнобедренный, значит <АВС = <АСВ по свойству углов равнобедренного треугольника
2. <ОВС = 1/2<АВС так как ВО - биссектриса, <ОСВ = 1/2<АСВ так как СО - биссектриса. <АВС = <АСВ, значит <ОВС = <ОСВ, следовательно ∆ВОС - равнобедренный по признаку равнобедренного треугольника.
Что и требовалось доказать.
5 1) 12 вроде
5 2)
1. <СВК = 1/2<АВС = 1/2 × 100° = 50° так как ВК - биссектриса
2. <СВК = <С = 50°, следовательно ∆КВС - равнобедренный по признаку равнобедренного треугольника, значит КВ = КС = 6 по свойству сторон равнобедренного треугольника
ответ: 6
Дано уравнение параболы 5x^2-7x-2y-4=0
Выделяем полные квадраты:
5(x²-2·(7/10)x + (7/10)²) -5·(7/10)² = 5(x-(7/10))²- (49/20)
Преобразуем исходное уравнение:
Получили уравнение параболы:
(x - x0)² = 2p(y - y0) .
(x-(7/10))² = 2·(1/5)(y - (-129/40)) .
Ветви параболы направлены вверх (p>0), вершина расположена в точке (x0, y0), то есть в точке ((7/10); (-129/40)) .
Параметр p = 1/5.
Координаты фокуса: (xo; yo+(p/2)) = (7/10); (-125/40)).
Уравнение директрисы: y = y0 - p/2
y = (-129/40) - (1/10) = (-133/40 ).
Параметры кривой более подробно даны во вложении.