Высота ВН равна 8, это следует из того, что треугольник АВН по признаку- равнобедренный, т.к. угол А в нем 45°. а угол этот 45°, потому что по свойству углов параллелограмма, прилежащих к стороне АD, сумма углов А и D равна 180°, 180°-135=45°, и. наконец, почему угол D равен 135°? Потому что сумма углов выпуклого четырехугольника НВКD равна 360°, в этом четырехугольнике известно три угла. ∠H=90°, ∠K=90°, ∠В=45°, значит, четвертый, т.е. ∠D=360°-90°-90°-45°=135°;
основание АD=AH+HD=8+2=10, значит, площадь параллелограмма равна AD*BH=10*8=80/ед. кв./
Высота ВН равна 8, это следует из того, что треугольник АВН по признаку- равнобедренный, т.к. угол А в нем 45°. а угол этот 45°, потому что по свойству углов параллелограмма, прилежащих к стороне АD, сумма углов А и D равна 180°, 180°-135=45°, и. наконец, почему угол D равен 135°? Потому что сумма углов выпуклого четырехугольника НВКD равна 360°, в этом четырехугольнике известно три угла. ∠H=90°, ∠K=90°, ∠В=45°, значит, четвертый, т.е. ∠D=360°-90°-90°-45°=135°;
основание АD=AH+HD=8+2=10, значит, площадь параллелограмма равна AD*BH=10*8=80/ед. кв./
Так как вписан прямоугольный треугольник CKB угол CKB — прямой, а следовательно и угол AKB тоже прямой, так как они смежные.
CB=45 и AB=60 — катеты, AC — гипотенуза
По теореме Пифагора, сумма квадратов катетов равна квадрату гипотенузы.
CK+KA=75
KA=CK+21
CK+(CK+21)=75
2CK=75-21
2CK=54
CK=27
KA=27+21=48
Найдем длину BK по той же теореме Пифагора:
CB²=CK²+BK²
BK²=CB²-CK²
Найдем площадь треугольника AKB по формуле S=(ab)/2, где a и b катеты
Теперь найдем площадь треугольника CKB:
Отношение площадей треугольников AKB и CKB
S(ΔAKB):S(ΔCKB) = 16:9