Нехай січна АВ перетинає прямі а і б так, що утворилися при цьому внутрішні накрет лежачі кути 1 і 3 рівні. тоді, як правило показано вище, кути 2 і 4 теж рівні. допустимо, що за такої умови прямі а і б перетинаються в якійсь віддаленій точці С. в результаті утворюється трикутник АВС. уявімо, що цей трикутник повернули навколо точки О - середини відрізка АВ - так, що відрізок ОА зайняв положення ОВ. тоді, оскільки кут 1 = кутку 3, а кут 2 = кутку 4, промінь АС поєднатися з променем ВК, а промінь ВС з променем АР. так як промені АС і ВС мають спільну точку С. це означає, що промені ВК і АР теж мають якусь загальну точку С 1. це означає, що через дві точки С і С1 проведені дві прямі. а цього не може бути. таким чином, якщо кут 1 = кутку 3, то прямі а і б НЕ могул перетинатися, а це значить що вони паралельні: а || б
х=3, у=3
Объяснение:
Итак, 13я задача при условии, что х у параллельны основаниям трапеции.
Рассмотрим △ACD и △OCN. У них угол при вершине С общий, а, например, <CON=<CAD как соответственные, значит △ACD ~ △OCN. =>
1) ON/AD=OC/AC.
Треугольники △AOD и △COB, образованные отрезками диагоналей и основаниями трапеции, подобны - свойство трапеции. =>
2) OC/AO=BC/AD
3) AO=AC-OC Подставим в 2):
OC/(AC-OC)=4/12=1/3
3*OC=AC-OC
4*OC=AC
OC/AC=1/4
Подставим это отношение в 1):
ON/12=1/4
ON=12*1/4=3
Значит у=3
Таким же образом из подобия △AOD ~ △COB выписываем OB/OD=BC/AD; а из подобия △ABD ~ △MBO выписываем OM/AD=OB/BD.
OD=BD-OB
Подставляем всё точно так же.
OB/(BD-OB)=4/12=1/3
OB/BD=1/4
OM/12=1/4
OM=x=3