Дұрыс алтыбұрышты призманың бүйір қырындағы екіжақты бұрыштың шамасын анықтаңдар. на : правильный шестиугольная призма находится на боковом крае определите угол двух углов.
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Смотри, из теоремы о сумме углов треугольника мы знаем, что сумма трех углов всегда равна 180. Отсюда можно сделать вывод, что не существует треугольника, в котором больше одного тупого угла (градусная мера больше 90) (например, угол 1-100 градусов, 2-95, 3-10, следовательно, 2 тупых угла. Сложим градусные меры всех углов. 100+95+10=205, что противоречит вышесказанной теореме, а значит, такого быть не может), в котором больше одного прямого угла (градусная мера равна 90) (приведу такой же пример: 1-90, 2-90, 3-10: 90+90+10=190, такого треугольника не сущ-ет)
К тому же, в прямоугольном треугольнике из 3 углов один равен 90, а на два других угла также приходится 90 градусов (например, один-30, другой-60/ 20, 70/ 10/80 и т.д.)-это первое свойство прямоугольного треугольника, которое также доказывает, что не может быть 2 прямых угла.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Смотри, из теоремы о сумме углов треугольника мы знаем, что сумма трех углов всегда равна 180. Отсюда можно сделать вывод, что не существует треугольника, в котором больше одного тупого угла (градусная мера больше 90) (например, угол 1-100 градусов, 2-95, 3-10, следовательно, 2 тупых угла. Сложим градусные меры всех углов. 100+95+10=205, что противоречит вышесказанной теореме, а значит, такого быть не может), в котором больше одного прямого угла (градусная мера равна 90) (приведу такой же пример: 1-90, 2-90, 3-10: 90+90+10=190, такого треугольника не сущ-ет)
К тому же, в прямоугольном треугольнике из 3 углов один равен 90, а на два других угла также приходится 90 градусов (например, один-30, другой-60/ 20, 70/ 10/80 и т.д.)-это первое свойство прямоугольного треугольника, которое также доказывает, что не может быть 2 прямых угла.