РАСЧЕТ ТРЕУГОЛЬНИКА. заданного координатами вершин: Вершина 1:S (A) (0; 0) Вершина 2: R(B) (0; 4) Вершина 3: T (C) (5.4643732485986; 8.375) ДЛИНЫ СТОРОН ТРЕУГОЛЬНИКА Длина RT (BС) (a) = 7 Длина ST (AС) (b) = 10 Длина SR (AB) (c) = 4 ПЕРИМЕТР ТРЕУГОЛЬНИКА Периметр = 21 ПЛОЩАДЬ ТРЕУГОЛЬНИКА Площадь = 10.9287464971972 УГЛЫ ТРЕУГОЛЬНИКА Угол S (BAC) при 1 вершине A: в радианах = 0.578104364566344 в градусах = 33.1229402077438 Угол R (ABC) при 2 вершине B: в радианах = 2.24592785973193 в градусах = 128.682187453489 Угол T (BCA) при 3 вершине C: в радианах = 0.317560429291521 в градусах = 18.1948723387668
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Вершина 1:S (A) (0; 0) Вершина 2: R(B) (0; 4)
Вершина 3: T (C) (5.4643732485986; 8.375)
ДЛИНЫ СТОРОН ТРЕУГОЛЬНИКА Длина RT (BС) (a) = 7
Длина ST (AС) (b) = 10 Длина SR (AB) (c) = 4
ПЕРИМЕТР ТРЕУГОЛЬНИКА Периметр = 21
ПЛОЩАДЬ ТРЕУГОЛЬНИКА Площадь = 10.9287464971972
УГЛЫ ТРЕУГОЛЬНИКА
Угол S (BAC) при 1 вершине A: в радианах = 0.578104364566344 в градусах = 33.1229402077438
Угол R (ABC) при 2 вершине B: в радианах = 2.24592785973193 в градусах = 128.682187453489
Угол T (BCA) при 3 вершине C: в радианах = 0.317560429291521 в градусах = 18.1948723387668
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301