В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
youngest1111
youngest1111
14.02.2022 09:11 •  Геометрия

Діагоналі трапеції АВСD ( ) перетинаються у точці О. Знайти АО та ОС, якщо периметри трикутників ВОС та АОD відносяться як 2 : 3 та АС = 20 см.

Показать ответ
Ответ:
Chillin
Chillin
27.06.2021 22:51

1) Центром вписанной окружности треугольника является точка пересечения биссектрис.

Биссектриса к основанию равнобедренного треугольника является высотой и медианой.

MO - биссектриса, KE - биссектриса, высота и медиана.

ME=EN=10

По теореме Пифагора

KE =√(MK^2-ME^2) =12*2 =24

По теореме о биссектрисе

KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3  

Или по формулам

S=pr

S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2

Отсюда

r=√[(p-a)(p-b)(p-c))/p]

при a=b

r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3

 

3) Вписанный угол, опирающийся на диаметр - прямой, K=90

MN =2*OM =26

По теореме Пифагора

KN =√(MN^2-MK^2) =5*2 =10

P(KMN) =2(5+12+13) =60


Балаян Эдуард Николаевич Геометрия. 7-9 классы. Задачи на готовых чертежах для подготовки к ОГЭ и Е
Балаян Эдуард Николаевич Геометрия. 7-9 классы. Задачи на готовых чертежах для подготовки к ОГЭ и Е
0,0(0 оценок)
Ответ:
ronnedtoby
ronnedtoby
28.10.2021 15:34

Длина перпендикуляра, проведённого из данной точки к данной прямой, называется расстоянием от этой точки к этой прямой.

#1.

Этим расстоянием будет являться отрезок BM, его длину нужно найти. Этот отрезок представляет собой катет прямоугольного треугольника, лежащий напротив угла в 30°. По свойству прямоугольного треугольника такой катет будет равен половине гипотенузы, в данном случае – AM. AM = 26, следовательно BM = 13.

ответ: 13.

#2. Сумма острых углов прямоугольного треугольника по его свойству должна быть равна 90°, тогда угол M + угол A = 90°, а так как угол M = 60°, то угол A = 30°. Нам требуется найти BM. BM – это катет, лежащий напротив угла в 30°, значит BM = 1/2 × AM, а так как AM = 30, то BM = 15.

ответ: 15.

#5. Я прикрепил рисунок к заданию. Нам нужно будет найти расстояние от точки M до AB, то есть перпендикуляр MF. Сумма острых углов прямоугольного треугольника равна 90°, тогда угол B + угол A = 90°. Угол B = 60° по условию, значит угол A = 30°. Тогда MF = 1/2 AM, так как MF – катет, лежащий напротив угла в 30. AM по условию равно 8, значит MF = 4.

ответ: 4.

#6. Рисунок к заданию прикрепил. Так как требуется найти расстояние от точки M до отрезка AB, то нужно найти перпендикуляр ME. Это задание можно решить двумя :

#1. ME – перпендикуляр, проведённый из вершины треугольника ABM, значит ME – высота. В треугольнике AMB два угла равны, значит треугольник равнобедренный. А в равнобедренном треугольнике высота, проведённая к основанию, является медианой, то есть ME – медиана. Есть свойство прямоугольного треугольника, которое гласит, что медиана, проведённая из вершины прямого угла прямоугольного треугольника, равна половине гипотенузы, тогда ME = 1/2 × AB, а раз AB = 15 по условию, то ME = 7,5.

#2. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол A + угол B = 90°, а раз они равны, то угол A = углу B = 45°, тогда треугольник AMB – равнобедренный. ME – перпендикуляр, а значит треугольники AME и BME – прямоугольные. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол BME + угол B = 90° и угол A + угол AME = 90°. Углы A и B = 45°, как мы уже убедились, значит углы BME и AME = 45°. Тогда треугольники AME и BME – равнобедренные, а значит в этих треугольниках боковые стороны равны. Тогда ME = AE и ME = BE. Треугольник AMB – равнобедренный, ME – высота, а значит ME – медиана, тогда AE = BE. Эти стороны образуют AB, которая равна 15, значит AE = BE = 7,5. А так как ME равна этим сторонам, то ME = 7,5.

ответ: 7,5.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота