Диагональ правильной четырёхугольной призмы равна а и образует с плоскостью боковой грани угол 30°. Найти: а) сторону основания призмы. б) угол между диагональю призмы и плоскостью основания в) площадь боковой поверхности призмы. г) площадь сечения призмы плоскостью, проходящей через диагональ основания параллельно диагонали призмы.
В основаниях правильной призмы - правильные многоугольники, а боковые грани - прямоугольники. Следовательно, ее боковые ребра перпендикулярны основанию. Треугольник ВD1А - прямоугольный (в основании призмы - квадрат, и ребра перпендикулярны основанию. а) Сторона основания противолежит углу 30°, поэтому АВ=а*sin 30=a/2 б) угол между диагональю призмы и плоскостью основания - это угол между диагональю ВD1 призмы и диагональю ВD основания. ВD как диагональ квадрата равна а√2):2 cos D1BD=BD:BD1=( а√2):2):a=(√2):2), и это косинус 45 градусов. в) площадь боковой поверхности призмы находят произведением высоты на периметр основания: S бок=DD1*AB= (а√2):2)*4*a/2=a²√2 г) Сечение призмы, площадь которого надо найти, это треугольник АСК. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. Верным является и обратное утверждение. Высота КН - средняя линия прямоугольного треугольника BDD1. Она параллельна диагонали призмы, а само сечение проходит через диагональ АС основания. S Δ(АСК)=КН*СА:2 SΔ (АСК)=(0,5а*а√2):2):2=(а²√2):8
т.к. KP=PM то трк равнобедренный значит PH- медиана биссектриса и высота следовательно угол KPH= углу HPM=21 градус. угол PHK=90 градусов
ответ: угол PHK=90 а угол KPH=21 градус
Задание 3
т.к. AO=OD угол BAO= углу CDO (по усл задачи)
угол AOB=углу DOC(смежные)
то треугольники равны по 2 признаку равенства
Задание 4
по условию задачи ML=MN значит трк MNL равнобедренный MD делит основание тр-ка на две равные половины значит MD биссектриса а биссектриса в равнобедренном тр-ке является и медианой и высотой
Задание 5
диаметры в круге равны значит в точке центра делятся пополам и у нас образуются 2 равнобедренных тр-ка MPN и OPK также у этих тр-ков есть вертикальные углы которые равны угол POK= углу MOH тогда треугольник POK равен тр-ку MON по 1 признаку тогда углы
плоскостью боковой грани угол 30°. Найти:
а) сторону основания
призмы.
б) угол между диагональю призмы и плоскостью основания
в) площадь боковой поверхности призмы.
г) площадь сечения призмы плоскостью, проходящей через диагональ основания параллельно диагонали призмы.
В основаниях правильной призмы - правильные многоугольники, а боковые грани - прямоугольники. Следовательно, ее боковые ребра перпендикулярны основанию.
Треугольник ВD1А - прямоугольный (в основании призмы - квадрат, и ребра перпендикулярны основанию.
а) Сторона основания противолежит углу 30°, поэтому АВ=а*sin 30=a/2
б) угол между диагональю призмы и плоскостью основания - это угол между диагональю ВD1 призмы и диагональю ВD основания.
ВD как диагональ квадрата равна а√2):2
cos D1BD=BD:BD1=( а√2):2):a=(√2):2),
и это косинус 45 градусов.
в) площадь боковой поверхности призмы находят произведением высоты на периметр основания:
S бок=DD1*AB= (а√2):2)*4*a/2=a²√2
г) Сечение призмы, площадь которого надо найти, это треугольник АСК.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. Верным является и обратное утверждение.
Высота КН - средняя линия прямоугольного треугольника BDD1. Она параллельна диагонали призмы, а само сечение проходит через диагональ АС основания.
S Δ(АСК)=КН*СА:2
SΔ (АСК)=(0,5а*а√2):2):2=(а²√2):8
задание 1
ответы: 3 4
задание 2
т.к. KP=PM то трк равнобедренный значит PH- медиана биссектриса и высота следовательно угол KPH= углу HPM=21 градус. угол PHK=90 градусов
ответ: угол PHK=90 а угол KPH=21 градус
Задание 3
т.к. AO=OD угол BAO= углу CDO (по усл задачи)
угол AOB=углу DOC(смежные)
то треугольники равны по 2 признаку равенства
Задание 4
по условию задачи ML=MN значит трк MNL равнобедренный MD делит основание тр-ка на две равные половины значит MD биссектриса а биссектриса в равнобедренном тр-ке является и медианой и высотой
Задание 5
диаметры в круге равны значит в точке центра делятся пополам и у нас образуются 2 равнобедренных тр-ка MPN и OPK также у этих тр-ков есть вертикальные углы которые равны угол POK= углу MOH тогда треугольник POK равен тр-ку MON по 1 признаку тогда углы
OMN=OHM=OPK=OKP=40 градусов
Объяснение: