Дана равнобедренная трапеция АВСД. АД - большее основание, ВС - меньшее основание. Из вершины В проведена высота ВК. Средняя линия трапеции ЕР. Высота ВК пересекает ЕР в точке О и делин на отрезки ЕО=2см и ОР=6см.
Проведем вторую высоту из вершины С. (высота СМ) СМ пересекает ЕР в точке Н.
Т.к. трапеция равнобедренная, то ОН=ВС, НР=ЕО=2см. ОН=6-2=4см. Следовательно основание ВС=4см.
Средняя линия трапеции равна полусумме оснований. Пусть АД=х, тогда ЕР=(4+х):2=8
Дана равнобедренная трапеция АВСД. АД - большее основание, ВС - меньшее основание. Из вершины В проведена высота ВК. Средняя линия трапеции ЕР. Высота ВК пересекает ЕР в точке О и делин на отрезки ЕО=2см и ОР=6см.
Проведем вторую высоту из вершины С. (высота СМ) СМ пересекает ЕР в точке Н.
Т.к. трапеция равнобедренная, то ОН=ВС, НР=ЕО=2см. ОН=6-2=4см. Следовательно основание ВС=4см.
Средняя линия трапеции равна полусумме оснований. Пусть АД=х, тогда ЕР=(4+х):2=8
4+х=20
х=12см
ответ: меньшее основание=4см, большее основание=12см
Объяснение:
а)
<САВ=<КАМ, вертикальные углы
<САВ=38°
∆АВС- равнобедренный, по условию
АВ=АС
В равнобедренном треугольнике углы при основании равны
СВ- основание
<С=<В
Сумма углов в треугольнике равна 180°
<С=(180°-<САВ)/2=(180°-38°)/2=142/2=71°
ответ: <САВ=38°; <АСВ=71°; <АВС=71°
б)
<АВК=180°, развернутый угол.
<АВС=<АВК-<СВК=180°-36°=144°
В равнобедренном треугольнике углы при основании равны.
<А=<С.
<А+<С=<СВК, теорема о внешнем угле треугольника.
<А=<С=<СВК/2=36°/2=18°
ответ: <АВС=144°; <ВАС=18°; <ВСА=18°
в)
∆АКВ- равнобедренный треугольник, по условию АК=КС
В равнобедренном треугольнике углы при основании равны
<КАС=<КСА.
Сумма углов в треугольнике равна 180°
<КАС=(180°-<АКС)/2=(180°-140°)/2=
=40°/2=20°
<АКВ=<КАС+<КСВ, теорема о внешнем угле треугольника
<АКВ=20°*2=40°
∆АКВ- равнобедренный треугольник
<КАВ=<КВА
<КАВ=(180°-<АКВ)/2=(180°-40°)/2=70°
<ВАС=<КАВ+<КАС=70°+20°=90°
ответ: <АСВ=20°; <ВАС=90°; <АВС=70°