Діагональ рівнобічної трапеції ділить навпіл її гострий кут, який дорівнює 60 градусів. знайти периметр трапеції, якщо її менша основа дорівнює 12 сантиметрів? велике дякую ☺♥
Розглянемо ΔАВС кут АВС дорівнює 120, кут ВАС дорівнює 60, тоді кут ВСА = 180 (120 + 30) = 30. виходить ΔАВС рівнобедрений, де АВ = ВС = 12. Так як трапеція рівнобедрена, то СД = АВ = 12. тепер проведемо з точок В і С виступила до АТ розглянемо ΔСоД. кут СОД = 90 °, тоді СД гіпотенуза, кут Д дорівнює 60 за умовою, кут С = 180 (90 + 60) = 30. тоді ОД = 12: 2 = 6, так як катет лежить навпроти кута в 30 ° дорівнює половині гіпотенузи, тоді ОД = АЕ = 6. отже АТ = АЕ + ЕО + ОД = 6 + 12 + 6 = 24. тоді Р = АВ + ВС + СД + ДА = 12 + 12 + 12 + 24 = 60. відповідь Р = 60