Діагоналі АС і ВD прямокутника АВСD перетинаються в точці О. АВ =
0,6 см, АС = 1 см, ВС = 0,8 см. Встановіть відповідність між периметрами названих
фігур (1-4) та їх числовими значеннями (А-Д):
1) периметр DОС; А) 2,8 см;
2) периметр АВС; Б) 1,6 см;
3) периметр многокутника АDСВО; В) 2,6 см;
4) периметр прямокутника АВСD. Г) 2,4 см;
Д) 3,2 см.
Теорема.
Если любую сторону треугольника продолжить в одном направлении, то образовавшийся при этом внешний угол больше каждого внутреннего угла, не смежного с ним.
Следствие из теоремы.
Если в треугольнике один из углов прямой или тупой, то два других угла будут острые.
Теорема. В любом треугольнике:
1. Напротив равных сторон расположены одинаковые углы.
2. Напротив большей стороны расположен больший угол.
Следствия из теоремы.
1. В равностороннем треугольнике все углы одинаковы.
2. В разностороннем треугольнике одинаковых углов нет.
Обратные теоремы. В каждом треугольнике:
1. Напротив одинаковых углов расположены одинаковые стороны.
2. Напротив большего угла расположена большая сторона.
Следствия
1. Равноугольный треугольник является и равносторонним.
2. В треугольнике сторона, расположенная напротив тупого или прямого угла, больше других сторон.
Периметр четырёхугольника AKLM равен 28 см
Объяснение:
Так как ΔАВС - равносторонний, а K, L, M являются серединами сторон АВ, ВС и АС, то
КВ=ВL=LС=МС=АМ=АК (1)
Так как K, L, M являются серединами сторон АВ, ВС и АС, то:
KL, LM, KM - средние линии ΔАВС.
Средняя линия треугольника — отрезок, который соединяет середины двух сторон.
Средняя линия, соединяющая середины двух сторон треугольника, равна половине третьей стороны:
LM = 1/2 * АВ = АК
KL = 1/2 * АС = АМ, но АМ = КВ (1) ⇒ ΔKLB - равносторонний.
По условию периметр ΔKLB = 21, следовательно
КL=KB=BL=21÷3=7 cм
Таким образом: КВ=ВL=LС=МС=АМ=АК = 7 см
Периметр четырёхугольника AKLM - это сумма всех его сторон:
Р(AKLM) = AK + KL + LM + АМ = 7+7+7+7 = 28 см