D 1. По данным рисунка найдите а) углы параллелограмма ABCD, если угол АВС на 48° больше угла BAD б) Периметр параллелограмма ABCD, если AB 16 м и в 2 раза меньше ВС с = агт ТТ
3.Если проведем отрезок от другого конца диаметра до этой точки, то мы получим прямоугольный треугольник, так как в нем будет вписанный угол опирающийся на диаметр
1) Найдем диаметр она равен 10*2=20- это будет гипотенузой прямоугольного треугольника
1.1) угол α-вписанный, значит, дуга AC=2*19=38
2) угол β-вписанный, значит, дуга AB=2*47=94
3) BD- диаметр, CD=180-(дуга АВ+ дуга АС)= 180-(38+94)=180-132=48
4) угол х- вписанный, Значит х=1/2 дуги CD=1/2*48=24
ответ: 24 (рисунок внизу)
2.1х+3х+5х=180
9х=180
х=20
1)20*1=20(1-ый угол)
2)20*3=60(2-ой угол)
3)20*5=100(3-ий угол)
Проверка:
20+60+80=180
3.Если проведем отрезок от другого конца диаметра до этой точки, то мы получим прямоугольный треугольник, так как в нем будет вписанный угол опирающийся на диаметр
1) Найдем диаметр она равен 10*2=20- это будет гипотенузой прямоугольного треугольника
2)по теореме Пифагора:
20²-16²=√400-256=√144=12
ответ:12 см
Объяснение: рисунок относится к первому заданию
Удачи!Для двух точек пространства A(3;1;-4) и B(2;4;3) координаты точки M(x;y;z) , которая делит отрезок в отношении λ=1/4, выражаются формулами:
Xm=(Xa+λ*Xb)/(1+λ),
Ym=(Ya+λ*Yb)/(1+λ),
Zm=(Za+λ*Zb)/(1+λ).
Найдем эти координаты:
Xm = (3+(1/4)*2)/(1+(1/4)) = (14/4):(5/4) = 14/5 = 2,8;
Ym = (1+(1/4)*4)/(1+(1/4)) = 2:(5/4) = 8/5 = 1,6;
Zm = (-4+(1/4)*3)/(1+(1/4)) = -(13/4):(5/4) = -13/5 = -2,6.
ответ: М(2,8:1,6:-3).Даны точки А(3;0) и точка B(-3;-1). Найти точку C, делящую AB в отношении 1:3.
в.отв:
-С(1;2)
-С(-4;3)
-С(4;1)
-С(0;-