Теорема о сумме углов треугольника — классическая теорема евклидовой . утверждает, что сумма углов треугольника на евклидовой плоскости равна 180°. из теоремы следует, что у любого треугольника не меньше двух острых углов. действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. сумма этих углов не меньше 180°. а это невозможно, так как сумма всех углов треугольника равна 180°. доказательство пусть {\displaystyle \delta abc} — произвольный треугольник. проведём через вершину bпрямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки aи d лежали по разные стороны от прямой bc. углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd. сумма всех трёх углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.
Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 ----------- Центр окружности лежит на АВ, следовательно, АD- диаметр. Проведем радиус ОС . Т.к. С - точка касания, ОС ⊥ АС. Треугольник АОС - прямоугольный. ОС=ОВ=ОD=r, АD:DB=1:2 ⇒ AD=DO=OB=r В прямоугольном треугольнике АСD гипотенуза AO=2 r=2 OC ⇒ sin∠OАС= OС:АО=1/2 ⇒ Угол ОАС=30º,⇒ угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒ Больший угол АСВ треугольника АВС равен ∠АСВ=∠АСО+∠ВСО=90º+30º=120º
-----------
Центр окружности лежит на АВ, следовательно, АD- диаметр.
Проведем радиус ОС .
Т.к. С - точка касания, ОС ⊥ АС.
Треугольник АОС - прямоугольный.
ОС=ОВ=ОD=r, АD:DB=1:2 ⇒
AD=DO=OB=r
В прямоугольном треугольнике АСD гипотенуза
AO=2 r=2 OC ⇒
sin∠OАС= OС:АО=1/2 ⇒
Угол ОАС=30º,⇒
угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º
Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒
Больший угол АСВ треугольника АВС равен
∠АСВ=∠АСО+∠ВСО=90º+30º=120º