Свойство: "средняя линия отсекает треугольник, подобный исходному с коэффициентом 1/2; его площадь равна одной четвёртой площади исходного треугольника". Следовательно, площадь трапеции
Saefc = Sabc - (1/4)*Sabc = (3/4)*Sabc. Или
Saefc = (3/4)*4√6 = 3√6дм².
Нам дано, что сечение образует с плоскостью угол 45°. Это двугранный угол между плоскостью основания (ABC) и плоскостью сечения (AE1F1C). Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Сечение ВНJ1, где ВН - высота треугольника АВС, а JH - высота трапеции АE1F1C и есть плоскость, перпендикулярная ребру АС двугранного угла. Значит <BHJ1 = 45°.
Площадь сечения AE1F1C - площадь трапеции, отличающейся от трапеции AEFC только высотой (их основания равны: АС - общая, E1F1 = EF, как среднии линии равных треугольников). Высота этой трапеции - это гипотенуза J1Н прямоугольного треугольника JJ1Н и равна J1H1=JH/Cos45° = JH/(√2/2) = JH*2/√2 (так как Cos45 =√2/2 ). Значит и площадь сечения равна
Объяснение:
1)
Прямая, это развернутый угол.
<1=180°-57°=123° (<1- отметила на чертеже)
Так как <1≠<122°, то прямые а∦b, так как соответственные углы не равны.
ответ: а∦b.
3)
Если два внешних угла равны, то и два внутренних угла равны.
Отсюда следует, что треугольник равнобедренный (углы при основании равны)
1) решение
Пусть основание треугольника будет равно 25, найдем боковые стороны.
(83-25)/2=29см.
ответ: стороны треугольника равны 25см; 29см; 29см
2) Решение
Пусть боковая сторона треугольника будет 25, найдем основание.
83-25*2=83-50=33см.
ответ: стороны треугольника равны: 25см; 25см; 33см.
4)
<САВ=180°-120°=60°. (Внутренний угол <А треугольника).
Так как треугольник прямоугольный
То <В=90°-<А=30° (Сумма острых углов в прямоугольном треугольнике равна 90°)
СА - катет который лежит против угла 30°. Равен половине гипотенузы (СА=1/2*АВ).
Пусть СА будет х; тогда АВ будет 2х.
Составляем уравнение.
х+2х=33
3х=33
х=33/3
х=11 см сторона СА.
11*2=22 см сторона АВ
ответ: СА=11см; АВ=22см
Площадь сечения равна 6√3дм².
Объяснение:
Свойство: "средняя линия отсекает треугольник, подобный исходному с коэффициентом 1/2; его площадь равна одной четвёртой площади исходного треугольника". Следовательно, площадь трапеции
Saefc = Sabc - (1/4)*Sabc = (3/4)*Sabc. Или
Saefc = (3/4)*4√6 = 3√6дм².
Нам дано, что сечение образует с плоскостью угол 45°. Это двугранный угол между плоскостью основания (ABC) и плоскостью сечения (AE1F1C). Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Сечение ВНJ1, где ВН - высота треугольника АВС, а JH - высота трапеции АE1F1C и есть плоскость, перпендикулярная ребру АС двугранного угла. Значит <BHJ1 = 45°.
Площадь сечения AE1F1C - площадь трапеции, отличающейся от трапеции AEFC только высотой (их основания равны: АС - общая, E1F1 = EF, как среднии линии равных треугольников). Высота этой трапеции - это гипотенуза J1Н прямоугольного треугольника JJ1Н и равна J1H1=JH/Cos45° = JH/(√2/2) = JH*2/√2 (так как Cos45 =√2/2 ). Значит и площадь сечения равна
Sae1f1c = Saefc*2/√2 = (3√6)*(2/√2) = 6√3дм²
ответ: площадь сечения равна 6√3дм².