Понятно, что в данном виде мы решаем линейное ур-ие. Но, как я и говорил, это задача с избыточным условием. Можно ее разделить на 2 самостоятельные задачи.
1)Длина гипотенузы прямоугольного треугольника 20 см, а радиус вписанной в него окружности 4 см. Найдите длины катетов
Здесь про средн. арифметич. ни слова.
как известно , у прямоуг. треугольника с катетами a,b, гипотенузой с и радусом впис. окр. a+b=c+2r a+b=28 и по т.Пифагора a²+b²=20² Решая систему приходим к ответу 16 и 12.
2)Длина гипотенузы прямоугольного треугольника 20 см.Найдите длины катетов, если больший из них равен среднему арифметическому длин меньшего катета и гипотенузы.
А здесь радиусе ни слова.
a=(b+20)/2 a²+b²=20²
Опять же, решая систему, приходим к тому же результату 16 и 12.
Решение: Так как у ромба все стороны равны,то найдем одну сторону: 104/4 = 26 (см.) - длина стороны. Что бы найти площадь,нам нужно найти вторую диагональ BD. Рассмотрим треугольник BOС. ВС равно - 26 (см.),ОС равно половине диагонали АС - 10 (см.) (так как диагонали точкой пересечения делятся пополам),так как диагонали ромба перпендикулярны,то угол О- прямой,а значит треугольник ВОС - прямоугольный.Найдем ВО за теоремой Пифагора: ВО = (см.) Так как диагонали ромба делят его на 4 равных прямоугольных треугольника,то ВО=ОD и ВО+ОD=BD. Диагональ BD = 24+24 = 48 (см.) Теперь найдем площадь ромба: S= (Умножаем диагонали и делим их произведение на два) S=
Но, как я и говорил, это задача с избыточным условием. Можно ее разделить на 2 самостоятельные задачи.
1)Длина гипотенузы прямоугольного треугольника 20 см, а радиус вписанной в него окружности 4 см. Найдите длины катетов
Здесь про средн. арифметич. ни слова.
как известно , у прямоуг. треугольника с катетами a,b, гипотенузой с и радусом впис. окр. a+b=c+2r
a+b=28
и по т.Пифагора
a²+b²=20²
Решая систему приходим к ответу 16 и 12.
2)Длина гипотенузы прямоугольного треугольника 20 см.Найдите длины катетов, если больший из них равен среднему арифметическому длин меньшего катета и гипотенузы.
А здесь радиусе ни слова.
a=(b+20)/2
a²+b²=20²
Опять же, решая систему, приходим к тому же результату 16 и 12.
Так как у ромба все стороны равны,то найдем одну сторону:
104/4 = 26 (см.) - длина стороны.
Что бы найти площадь,нам нужно найти вторую диагональ BD.
Рассмотрим треугольник BOС. ВС равно - 26 (см.),ОС равно половине диагонали АС - 10 (см.) (так как диагонали точкой пересечения делятся пополам),так как диагонали ромба перпендикулярны,то угол О- прямой,а значит треугольник ВОС - прямоугольный.Найдем ВО за теоремой Пифагора:
ВО = (см.)
Так как диагонали ромба делят его на 4 равных прямоугольных треугольника,то ВО=ОD и ВО+ОD=BD.
Диагональ BD = 24+24 = 48 (см.)
Теперь найдем площадь ромба:
S= (Умножаем диагонали и делим их произведение на два)
S=
ответ: 480