Четырёхугольник ABCD задан координатами своих вершин A (2; 5), B (–3; 7), C (–6; 2), D (–1; –1). Выполните построения и укажите координаты вершин четырёхугольника A1B1C1D1, полученного путём параллельного переноса на вектор a{3,-2} из четырёхугольника ABCD. ответ: А1 ( ; ), В1 ( ; ), С1 ( ; ), D1
2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC.
3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD.
4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов.
5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180.
180-90-60=2х
30=2х
х=15 градусов = угол ACD = ADC.
6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что:
45=15+CDB
CDB = 30 градусов