эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.
букв не вижу, поэтому буквенные наименования сторон и углов от меня не ждите.
Объяснение:
Задача 5
треугольники равны, т.к. 1) два равных угла = 90°
2) Есть общая сторона(букв не назову, не вижу); 3) 2 стороны отмечены как равные(внизу которые).
Следовательно, треугольники равны по 1 признаку - по 2 сторонам и углу между ними
Задача 8.
Треугольники равны, т.к. 1) Есть равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей; 2) Диагональ параллелограмма - общая сторона треугольников, следовательно равная; 3) Противоположные стороны параллелограмма равны.
Следовательно, треугольники равны по 1 признаку - по 2 сторонам и углу между ними
Задача 9.
треугольники равны, т.к. 1) Есть равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей; 2) Диагональ параллелограмма - общая сторона треугольников, следовательно равная; 3) Есть другие равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей
Следовательно, треугольники равны по 2 признаку - по 2 углам и стороне между ними
эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.
букв не вижу, поэтому буквенные наименования сторон и углов от меня не ждите.
Объяснение:
Задача 5
треугольники равны, т.к. 1) два равных угла = 90°
2) Есть общая сторона(букв не назову, не вижу); 3) 2 стороны отмечены как равные(внизу которые).
Следовательно, треугольники равны по 1 признаку - по 2 сторонам и углу между ними
Задача 8.
Треугольники равны, т.к. 1) Есть равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей; 2) Диагональ параллелограмма - общая сторона треугольников, следовательно равная; 3) Противоположные стороны параллелограмма равны.
Следовательно, треугольники равны по 1 признаку - по 2 сторонам и углу между ними
Задача 9.
треугольники равны, т.к. 1) Есть равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей; 2) Диагональ параллелограмма - общая сторона треугольников, следовательно равная; 3) Есть другие равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей
Следовательно, треугольники равны по 2 признаку - по 2 углам и стороне между ними