Четырёхугольник abcd, диагонали которого взаимно перпендикулярны, вписан в окружность. перпендикуляры, опущенные на сторону ad из вершин b и c, пересекают диагонали ac и bd в точках e и f соответственно. найдите ef, если bc = 1.
Так как перпендикуляры из В и С, опущенные на АD - параллельны,то ВF и ЕС при них секущие, и∠ 1=∠2, и∠ 3=∠ 4 как накрестлежащие. Рассмотрим треугольники ВМD и ВОЕ. Они подобны, так как оба прямоугольные по условию и имеют общий ∠ 1.Следовательно, и∠ 5 = ∠ 3 треугольника ВОЕ∠ 6 и ∠ 5 вписанные и опираются на одну и ту же дугу, которая стягивается хордой АВ. Следовательно,∠6 = ∠ 5. А ∠ 5 = ∠3 и потому и∠5=∠ 4, равенство с которым угла 3 доказано выше .Следовательно,∠ 6=∠ 4.Рассмотрим Δ АСН и Δ СОF Они прямоугольные, имеют общий угол АСН и потому подобны.Отсюда следует ∠ 2 = ∠7. Вписанный ∠7 опирается на ту же дугу, что вписанный ∠ 8 треугольника СВД, следовательно,∠7 = ∠8. Но ∠ 7= ∠2=∠ 1.⇒ ∠1=∠ 8. ⇒∠ 8=∠2 Рассмотрим Δ ВСF.Углы при основании ВF равны,СО делит ∠ ВСН на два равныхи является биссектрисой и высотой этого треугольника.Следовательно,Δ ВСF - равнобедренный. Но ЕО в треугольнике ВЕФ - также высота, и ВО=ОF.Этот треугольник также равнобедренный.∠ 1=∠ 9,а∠ 3= ∠10, т.к. ЕО высота и биссектриса равнобедренного треугольинка ВЕF Таким же образом треугольник ВСЕ и треугольник ЕFС равнобедренные и равны между собой. В результате всех этих доказательств мы имеем четырехугольник, в котором все стороны равны, и этого достаточно для того, чтобы утверждать равенство ЕF=ВС=1
Они подобны, так как оба прямоугольные по условию и имеют общий ∠ 1.Следовательно, и∠ 5 = ∠ 3 треугольника ВОЕ∠ 6 и ∠ 5 вписанные и опираются на одну и ту же дугу, которая стягивается хордой АВ.
Следовательно,∠6 = ∠ 5.
А ∠ 5 = ∠3 и потому и∠5=∠ 4, равенство с которым угла 3 доказано выше .Следовательно,∠ 6=∠ 4.Рассмотрим Δ АСН и Δ СОF
Они прямоугольные, имеют общий угол АСН и потому подобны.Отсюда следует ∠ 2 = ∠7.
Вписанный ∠7 опирается на ту же дугу, что вписанный ∠ 8 треугольника СВД, следовательно,∠7 = ∠8.
Но ∠ 7= ∠2=∠ 1.⇒
∠1=∠ 8. ⇒∠ 8=∠2
Рассмотрим Δ ВСF.Углы при основании ВF равны,СО делит ∠ ВСН на два равныхи является биссектрисой и высотой этого треугольника.Следовательно,Δ ВСF - равнобедренный.
Но ЕО в треугольнике ВЕФ - также высота, и ВО=ОF.Этот треугольник также равнобедренный.∠ 1=∠ 9,а∠ 3= ∠10, т.к. ЕО высота и биссектриса равнобедренного треугольинка ВЕF
Таким же образом треугольник ВСЕ и треугольник ЕFС равнобедренные и равны между собой.
В результате всех этих доказательств мы имеем четырехугольник, в котором все стороны равны, и этого достаточно для того, чтобы утверждать равенство ЕF=ВС=1