Четырёхугольник abcd со сторонами ab = 5 и cd = 17 вписан в окружность. диагонали ac и bd пересекаются в точке k, причём найдите радиус окружности, описанной около этого четырёхугольника.
площадь правильного треугольника по условию пирамида правильная, => высота пирамиды проектируется в центр треугольника - точка пересечения медиан, биссектрис, высот, которые в точке пересечение делятся в отношении 2:3 считая от вершины высота правильного треугольника вычисляется по формуле:
ΔAMO: AM=8, <MAO=60°, => <AMO=30° AO=AM/2 катет против угла 30° в 2 раза меньше гипотенузы. АО=4 OM²=AM²-AO², OM²=8²-4², OM=4√3
Я ТАКОЕ редко пишу тут, но всё-таки не первый раз. Если в прямоугольном треугольнике провести радиусы из центра вписанной окружности в точки касания катетов, то "возле вершины прямого угла" образуется квадрат. (Тут не нужны длинные пояснения, слово "квадрат" все решает. Квадрат там потому, что у четырехугольника есть заведомо 3 прямых угла и две равные соседние стороны - радиусы в точки касания) То есть можно обозначить отрезки, на которые вписанная окружность делит стороны точками касания, так. Гипотенуза c делится на отрезки x и y, а катеты - на отрезки x и r - катет a, y и r - другой катет b. Дальше все просто. x + y = c; x + r = a; y + r = b; Если сложить два нижних равенства и вычесть первое, то останется 2*r = a + b - c; или r = (a + b - c)/2; Для примитивного египетского треугольника (3,4,5) r = 1;
найти:V
решение.
площадь правильного треугольника
по условию пирамида правильная, => высота пирамиды проектируется в центр треугольника - точка пересечения медиан, биссектрис, высот, которые в точке пересечение делятся в отношении 2:3 считая от вершины
высота правильного треугольника вычисляется по формуле:
ΔAMO: AM=8, <MAO=60°, => <AMO=30°
AO=AM/2 катет против угла 30° в 2 раза меньше гипотенузы.
АО=4
OM²=AM²-AO², OM²=8²-4², OM=4√3
Если в прямоугольном треугольнике провести радиусы из центра вписанной окружности в точки касания катетов, то "возле вершины прямого угла" образуется квадрат.
(Тут не нужны длинные пояснения, слово "квадрат" все решает. Квадрат там потому, что у четырехугольника есть заведомо 3 прямых угла и две равные соседние стороны - радиусы в точки касания)
То есть можно обозначить отрезки, на которые вписанная окружность делит стороны точками касания, так. Гипотенуза c делится на отрезки x и y, а катеты - на отрезки x и r - катет a, y и r - другой катет b. Дальше все просто.
x + y = c;
x + r = a;
y + r = b;
Если сложить два нижних равенства и вычесть первое, то останется
2*r = a + b - c; или r = (a + b - c)/2;
Для примитивного египетского треугольника (3,4,5) r = 1;