В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
OlgaStarikova
OlgaStarikova
27.03.2022 09:49 •  Геометрия

Через точку A окружности с центром в точке о проведены касательная AB и хорда AC равна 4 см,а угол b а ц равен 30 градусов.вычислите периметр треугольника ABC

Показать ответ
Ответ:
денисдениска
денисдениска
21.02.2022 21:40

1). Предположим, что такой треугольник и в правду существует. Пусть есть некий треугольник ABC, в котором проведены биссектрисы AK и CL. Для удобства обозначим ∠KAC=∠KAB=∠1, а ∠LCA=∠LCB=∠2 (эти углы равны, т.к. AK и CL - биссектрисы). Биссектрисы AK и CL перпендикулярны и пересекаются в точке О, т.е. ∠AOL=90°, тогда ∠AOC=180°-∠AOL=90°, как смежный. ∠LOK=∠AOC=90°, как вертикальные. ∠COK=∠AOL=90°, как вертикальные. Получаем, что ∠AOL=∠AOC=∠LOK=∠COK=90°;

2). Рассмотрим прямоугольный треугольник AOC, т.к. ∠AOC=90°. В треугольнике AOC ∠1+∠2=90°, как сумма острых углов в прямоугольном треугольнике (∠1=∠KAC, ∠2=∠LCA из предыдудшего пункта);

3). Рассмотрим прямоугольный треугольник AOL, т.к. ∠AOL=90°. ∠1+∠ALO=90°, как сумма острых углов прямоугольного треугольника AOL. Тогда ∠ALO=90°-∠1;

4). Рассмотрим прямоугольный треугольник COK, т.к. ∠COK=90°. ∠2+∠CKO=90°, как сумма острых углов прямоугольного треугольника COK. Тогда ∠CKO=90°-∠2;

5). Рассмотрим четырехугольник LBKO:

∠BLO=180°-∠ALO, как смежный угол. Подставив значение ∠ALO из п. 3, получаем:

∠BLO=180°-90°+∠1=90°+∠1;

Аналогично ∠BKO=180°-∠CKO, как смежный угол. Подставив значение ∠CKO из п. 4, получаем:

∠BKO=180°-90°+∠2=90°+∠2;

∠LOK=90° из п. 1;

Т.к. сумма всех углов четырехугольника равна 360°, то:

∠BLO+∠BKO+∠LOK+∠LBK=360°;

Подставив найденные значения, получаем:

90°+∠1+90°+∠2+90°+∠LBK=360°;

270°+∠1+∠2+∠LBK=360°;

∠1+∠2=90°-∠LBK;

6). Но в п. 2 мы выяснили, что ∠1+∠2=90°, получается некоторое противоречие:

∠1+∠2=90°

∠1+∠2=90°-∠LBK

Такого быть не может, а значит треугольника, в котором две биссектрисы взаимно перпендикулярны, не существует.

ответ: Нет, не существует.



Существует треугольник, две биссектрисы которого взаимно перпендикулярны?
0,0(0 оценок)
Ответ:
merimargaryan
merimargaryan
25.05.2020 16:30

1)Это прямоугольные треугольники,с любыми сторонами, но прямоугольные.

2)Площадь прямоугольника равна произведению его смежных сторон, или произведению длины на ширину.

3) 1.Равные многоугольники имеют равные площади  

   2.Если многоугольник составлен из нескольких многоугольников, то   его площадь равна сумме площадей этих многоугольников .  

  3.Площадь квадрата равна квадрату его стороны

4)Площадь параллелограмма равна произведению длины одной из его сторон на высоту, опущенную на эту сторону Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними Площадь параллелограмма равна половине произведения его диагоналей на синус угла между ними.

5)Много вариантов есть, так как площадь многоугольников может и делиться, и уменьшаться, и увеличиваться.

6)Площадь треугольника равна половине произведения его сторон на синус угла между ними.

7)Площадь прямоугольного треугольника равняется половине произведения катетов. Дан прямоугольный треугольник с катетами a = 8 см, b = 6 см. Также в прямоугольном треугольнике применяется теорема Пифагора. – сумма квадратов двух катетов равняется квадрату гипотенузы.

8)Площадь трапеции равна произведению полусуммы оснований на высоту. Доказательство. Проведя в трапеции ABCD (рис.1) диагональ DB, можно рассматривать ее площадь S как сумму площадей двух треугольников BCD и ADB.

9)Если угол одного треугольника равен углу другого треугольника, то отношение площадей этих треугольников равно отношению произведений сторон, заключающих равные углы.

10)Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

11)Отношение площадей треугольников, имеющих равную высоту, равно отношению их оснований.

12)Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.

13)1. Площадь ромба равна произведению стороны на высоту, проведенную к этой стороне (S=ah)

2. Если известна сторона ромба (у ромба все стороны равны) и угол между сторонами, то площадь можно найти по следующей формуле(S=a2 sin a)

3. Площадь ромба также равна полупроизведению диагоналей

4. Если известен радиус r окружности, вписанной в ромб  и сторона ромба a, то его площадь вычисляется по формуле.

14)Площадь прямоугольного треугольника равняется половине произведения катетов. Дан прямоугольный треугольник с катетами a = 8 см, b = 6 см. Также в прямоугольном треугольнике применяется теорема Пифагора. – сумма квадратов двух катетов равняется квадрату гипотенузы.

15)Если высоты двух треугольников равны, то их площади относятся как основания. И Если высоты двух треугольников равны, то их площади относятся как основания

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота