Через середину твірної циліндра проведено пряму,яка перетинає площину нижньої основи на відстані 18 см від центра основи,а вісь циліндра перетинає на відстані 4 см від площини нижньої основи. Обчислити об'єм циліндра якщо його висота 12 см.
1) Для нахождения координат требуется решить систему данных уравнений. Из второго уравнения находим x=3y-4, Подставляя это выражение для x в первое уравнение, получаем уравнение 4-3y+2y-4=-y=0, откуда y=0. Подставляя найденное значение y в любое из данных уравнений, находим x=-4. Таким образом, точка пересечения прямых имеет координаты (-4,0). 2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
(при том, что с - гипотенуза) №1 По свойству углов в треугольнике, их сумма должна быть равна 180. Т.е. ∠В=180-45-90=45 следовательно, ∠В=∠А=45, треугольник равнобедренный, поэтому боковые стороны (катеты) равны. По т. Пифагора:
Нам известны все стороны, теперь нужно найти S и Р
№2 а - катет = 1. ∠В=60. Опять же по с-ву углов в треугольнике, ∠А=30, а по с-ву угла в 30* с=2а=2 По т. Пифагора
Нам известны все стороны, теперь нужно найти S и Р
№3 ∠А=30 Опять же, по свойству угла 30*, По т. Пифагора:
Нам известны все стороны, теперь нужно найти S и Р
№4
a=b, следовательно, это равнобедренный прямоугольный треугольник. По т. Пифагора:
2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
№1
По свойству углов в треугольнике, их сумма должна быть равна 180. Т.е. ∠В=180-45-90=45 следовательно, ∠В=∠А=45, треугольник равнобедренный, поэтому боковые стороны (катеты) равны. По т. Пифагора:
Нам известны все стороны, теперь нужно найти S и Р
№2
а - катет = 1. ∠В=60. Опять же по с-ву углов в треугольнике, ∠А=30, а по с-ву угла в 30* с=2а=2
По т. Пифагора
Нам известны все стороны, теперь нужно найти S и Р
№3
∠А=30
Опять же, по свойству угла 30*,
По т. Пифагора:
Нам известны все стороны, теперь нужно найти S и Р
№4
a=b, следовательно, это равнобедренный прямоугольный треугольник. По т. Пифагора:
Периметр и площадь по известной формуле.
№5
b=7
По т. Пифагора:
Периметр и площадь по известной формуле.