Если прямая не находится в плоскости, то она может пересекать её или быть параллельной ей. Тогда плоскости могут пересекатся или быть параллельными, последнее далеко не всегда верно, но этому ни чего не противоречит, по условию, так что это возможно.
ответ: б) параллельны или пересекающиеся.
1.2.
По признаку параллельности прямой и плоскости - мы имеем множество прямых, которые параллельны второй плоскости и они лежат в первой плоскости эта плоскость так же параллельна второй плоскости, ведь если она пересечёт, то найдётся такая прямая, которая так же пересечёт, а как мы выянили все прямые параллельны.
ответ: б) параллельны.
2.
По определению скрещивающиеся прямые это такие прямые, которые не находятся в одной плоскости. Пересекающиеся прямые всегда лежат в одной плоскости (одно из следствий из одной аксиомы стереометрии). Прямые параллельны в пространстве, если они лежат в одной плоскости и не пересекаются (определение).
В треугольнике может быть только один тупой угол. Следовательно, это угол против основания. Углы при основании равны. По сумме внутренних углов треугольника <C = (180°-120°):2 = 30°.
В прямоугольном треугольнике АНС (АН - высота на продолжение стороны СВ) АН = АС:2 = 4:2 =2см как катет, лежащий против угла 30°.
ответ:1.1.
Если прямая не находится в плоскости, то она может пересекать её или быть параллельной ей. Тогда плоскости могут пересекатся или быть параллельными, последнее далеко не всегда верно, но этому ни чего не противоречит, по условию, так что это возможно.
ответ: б) параллельны или пересекающиеся.
1.2.
По признаку параллельности прямой и плоскости - мы имеем множество прямых, которые параллельны второй плоскости и они лежат в первой плоскости эта плоскость так же параллельна второй плоскости, ведь если она пересечёт, то найдётся такая прямая, которая так же пересечёт, а как мы выянили все прямые параллельны.
ответ: б) параллельны.
2.
По определению скрещивающиеся прямые это такие прямые, которые не находятся в одной плоскости. Пересекающиеся прямые всегда лежат в одной плоскости (одно из следствий из одной аксиомы стереометрии). Прямые параллельны в пространстве, если они лежат в одной плоскости и не пересекаются (определение).
2.1.
ответ: а) скрещивающиеся.
2.2.
ответ: в) параллельны или пересекающиеся.
Объяснение:
Задача 1.
<PBH=15° (дано).
<CBP = 45° (BP - биссектриса прямого угла).
<CBH = <CBP+<PBH = 45°+15° = 60°. => <C = 30°(по сумме острых углов прямоугольного треугольника НВС).
<A=60°(по сумме острых углов прямоугольного треугольника AВС).
ответ: 60°, 30° и 90°.
Задача 2.
В треугольнике может быть только один тупой угол. Следовательно, это угол против основания. Углы при основании равны. По сумме внутренних углов треугольника <C = (180°-120°):2 = 30°.
В прямоугольном треугольнике АНС (АН - высота на продолжение стороны СВ) АН = АС:2 = 4:2 =2см как катет, лежащий против угла 30°.
ответ: АН = 2см.
Задача 3.
<A = <C (треугольник АВС равнобедренный).
<PAC = (1/2)*<А (АР - биссектриса угла А).
<НАС = (1/4)*<A (AH - биссектриса угла РАС).
По сумме острых углов прямоугольного треугольника АНС (<Н = 90º - АН - высота) имеем: (1/4)*<A+<C = (1/4)*<A+<A = 90º =>
<A = 72º => <C = 72º => <B = 180-2*72 = 36º.
ответ: <A = <C= 72º , <B =36º .