Через середину o стороны bc треугольника abc проведена прямая, которая пересекает сторону ab в точке d, а продолжение стороны ac- в точке е так, что угол в= углу е. равны ли треугольники obd и oec? решите , мне нужен !
SABC-правильная пирамида,ВS=12см, <SВD=60гр.Пирамида правильная,значит в основании лежит правильный треугольник АВС.Обозначим сторону треугольника за а.Найдем высоту этого треугольника BD. BD=ABsin60=a√3/2. OВ=2/3BD=2/3*a√3/2=a√3/3=SBcos60= =12*1/2=6⇒а=6√3см Sосн=1/2а²sin60=1/2*108*√3/2=27√3см² Найдем высоту боковой грани SD из прямоугольного треугольника SOD SO=SBsin60=12*√3/2=6√3см,DO=1/3BD=1/3*6√3*√3/2=3см SD=√SO²+DO²=√108+9=√117=3√13 Sбок=3*1/2*АС*SD=3*1/2*6√3*3√13=27√39см² Sпол=Sосн+Sбок=27√3+27√39=27(√3+√13)cм²
а)
PE ∩ AB = P₁ т.к. PE, AB ⊂ (ABC).
PE ∩ BC = E₁ т.к. PE, BC ⊂ (ABC).
P₁ и E₁ ∈ PE ⊂ (TPE) ⇒ P₁ и E₁ ∈ (TPE).
P₁ ∈ AB ⊂ (ABS) и T ∈ SB ⊂ (ABS) соединяем две точке, которые лежат в одной плоскости (ABS).
P₁T ∩ SA = N ∈ (TPE) т.к. T, P₁ ∈ (TPE).
E₁ ∈ BC ⊂ (BCS) и T ∈ SB ⊂ (BCS) соединяем две точке, которые лежат в одной плоскости (BCS).
E₁T ∩ SC = M ∈ (TPE) т.к. T, E₁ ∈ (TPE).
TMEPN - нужное сечение.
б)
M, N ∈ (TPE);
M ∈ SC ⊂ (SAC) ⇒ M ∈ (SAC);
N ∈ SA ⊂ (SAC) ⇒ N ∈ (SAC).
Получается, что (TPE) ∩ (SAC) = MN
ответ: MN.
=12*1/2=6⇒а=6√3см
Sосн=1/2а²sin60=1/2*108*√3/2=27√3см²
Найдем высоту боковой грани SD из прямоугольного треугольника SOD
SO=SBsin60=12*√3/2=6√3см,DO=1/3BD=1/3*6√3*√3/2=3см
SD=√SO²+DO²=√108+9=√117=3√13
Sбок=3*1/2*АС*SD=3*1/2*6√3*3√13=27√39см²
Sпол=Sосн+Sбок=27√3+27√39=27(√3+√13)cм²