Через конечную точку d диагонали bd=16,8 ед. изм. квадрата abcd проведена прямая перпендикулярно диагонали bd. проведённая прямая пересекает прямые ba и bc в точках m и n соответственно. определи длину отрезка mn.
1. Через точку конца диагонали квадрата проведём прямую MN перпендикулярно диагонали. Тогда со сторонами квадрата и прямыми, на которых находятся стороны квадрата, проведённая прямая образует углы 45°. Это легко доказать с чертежа в приложении. Только вместо точки Р у нас Д.
2. Теперь имеем 4 равных прямоугольных треугольника (признак по равным катетам и острым углам), у которых равны их гипотенузы.
3. Отрезок MN состоит из гипотенуз двух треугольников, следовательно, длина MN=2⋅16,8=33,6 ед. изм.
2*16.8=33.6
Объяснение:
1. Через точку конца диагонали квадрата проведём прямую MN перпендикулярно диагонали. Тогда со сторонами квадрата и прямыми, на которых находятся стороны квадрата, проведённая прямая образует углы 45°. Это легко доказать с чертежа в приложении. Только вместо точки Р у нас Д.
2. Теперь имеем 4 равных прямоугольных треугольника (признак по равным катетам и острым углам), у которых равны их гипотенузы.
3. Отрезок MN состоит из гипотенуз двух треугольников, следовательно, длина MN=2⋅16,8=33,6 ед. изм.