Через кінець а відрізка ав проведено площину а. через в і точку с відрізка ав проведено паралельні прямі, що перетинають площину а у точках в1 і с1. знайти сс1, якщо ас=5 см, ав=9 см, вв1=22,5 см
Пусть в тр-ках авс и а (1)в (1)с (1) 1) равны медианы вк и в (1)к (1) , 2) угол авк =углу а (1)в (1)к (1) 3) угол свк = углу с (1)в (1)к (1) доказать, что тр-к авс = тр-ку а (1)в (1)с (1) доказательство в тр-ке авс продолжим медиану вк и отложим км =вк и точку м соединим с точками а и с аналогичные построения сделаем в тр-ке а (1)в (1)с (1), тогда вм =в (1)м (1) 1) тр-к акв =тр-ку скм ( по двум сторонам вк=км и ак=кс и углу между ними -они вертикальные) 2) аналогично тр-к а (1)к (1)в (1) =тр-ку с (1)к (1)м (1) отсюда следует 3) ав=мс =а (1)в (1) =м (1)с (1), < авм = < вмс =< а (1)в (1)м (1) = < в (1)м (1)с (1) 4) тогда тр-к всм = тр-ку в (1)с (1)м (1) по стороне вм =в (1)м (1) и двум прилежащим углам 5) отсюда вс =в (1)с (1) и ав=мс =а (1)в (1) =м (1)с (1), 6) проэтому тр-к авс = тр-ку а (1)в (1)с (1) по двум сторонам и углу между ними второй способ состоит в том, что по теореме " площадь тр-ка равна половине произведения двух сторон на синус угла между ними выражают стороны ав и вс через медиану вк и углы авк и свк применяя соотношение s (авс) = s (авк) + s (свк) и доказывают, что ав= а (1)в (1) и вс= в (1)с (1)
Трапеция АВСД, АС перпендикулярна СД, АД=50, СД=30, ВД биссектриса угла Д, точка О -пересечение диагоналей, уголАДВ=уголВДС, уголАДВ=угголСВД как внутренние разносторонние, треугольник ВСД равнобедренный, ВС=СД=30, проводим высоту СН на АД, НД=х, АН=АД-НД=50-х, СН в квадрате = АН*НД=(50-х)*х=50х-х в квадрате, треугольник НСД прямоугольный, СН в квадрате = СД в квадрате-НД в квадрате= 900-х в квадрате, 50х-х в квадрате=900-х в квадрате, 50х=900, х=18=СН-высота трапеции, площадь=(ВС+АД)*СН/2=(30+50)*18/2=720