В равнобедренном треугольнике углы при основании равны. ∠ВАС=∠ВСА
Обозначим данный треугольник АВС; О - точку пересечения прямых ЕТ||АВ и МК||АС.
АС секущая при ВА║ЕТ ⇒
∠ЕТС=∠ВАС как соответственные.
ЕТ секущая при МК║АС⇒
∠ЕОК=∠ЕТС как соответственные, следовательно, ∠ЕОК=∠ВАС.
ВС секущая при МК||АС⇒
∠ЕКО=∠ВСА, как соответственные. .
Следовательно, ∠ЕКО=∠ЕОК. что является признаком равнобедренного треугольника. ⇒
Треугольник ЕОК равнобедренный с углами при основании, которые равны углам при основании АС треугольника АВС.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
В равнобедренном треугольнике углы при основании равны. ∠ВАС=∠ВСА
Обозначим данный треугольник АВС; О - точку пересечения прямых ЕТ||АВ и МК||АС.
АС секущая при ВА║ЕТ ⇒
∠ЕТС=∠ВАС как соответственные.
ЕТ секущая при МК║АС⇒
∠ЕОК=∠ЕТС как соответственные, следовательно, ∠ЕОК=∠ВАС.
ВС секущая при МК||АС⇒
∠ЕКО=∠ВСА, как соответственные. .
Следовательно, ∠ЕКО=∠ЕОК. что является признаком равнобедренного треугольника. ⇒
Треугольник ЕОК равнобедренный с углами при основании, которые равны углам при основании АС треугольника АВС.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°