1) Для нахождения координат требуется решить систему данных уравнений. Из второго уравнения находим x=3y-4, Подставляя это выражение для x в первое уравнение, получаем уравнение 4-3y+2y-4=-y=0, откуда y=0. Подставляя найденное значение y в любое из данных уравнений, находим x=-4. Таким образом, точка пересечения прямых имеет координаты (-4,0). 2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
Концы отрезка, длина которого 16 см, принадлежат двум взаимно перпендикулярным плоскостям. Расстояние от концов отрезка до линии пересечения плоскостей равны 8 см и 8√2 см. найти углы, которые образует отрезок со своими проекциями на данные плоскости.
Решение.
Даны две взаимно перпендикулярные плоскости α и β.
Пусть отрезок АВ = 16 см. Расстояние от точки А, принадлежащей плоскости α, до линии пересечения плоскостей - это перпендикуляр АН, а расстояние от точки В, принадлежащей плоскости β, до линии пересечения плоскостей - это перпендикуляр ВР. Соответственно, ВН - проекция отрезка АВ на плоскость β, а АР - проекция отрезка АВ на плоскость α.
Следовательно, надо найти углы АВН и ВАР.
Отметим, что АН⊥НВ, а ВР⊥АР, так как АН⊥β, а ВР⊥α соответственно по построению.
2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
∠АВН = 30°; ∠ВАР = 45°.
Пошаговое объяснение:
Концы отрезка, длина которого 16 см, принадлежат двум взаимно перпендикулярным плоскостям. Расстояние от концов отрезка до линии пересечения плоскостей равны 8 см и 8√2 см. найти углы, которые образует отрезок со своими проекциями на данные плоскости.
Решение.
Даны две взаимно перпендикулярные плоскости α и β.
Пусть отрезок АВ = 16 см. Расстояние от точки А, принадлежащей плоскости α, до линии пересечения плоскостей - это перпендикуляр АН, а расстояние от точки В, принадлежащей плоскости β, до линии пересечения плоскостей - это перпендикуляр ВР. Соответственно, ВН - проекция отрезка АВ на плоскость β, а АР - проекция отрезка АВ на плоскость α.
Следовательно, надо найти углы АВН и ВАР.
Отметим, что АН⊥НВ, а ВР⊥АР, так как АН⊥β, а ВР⊥α соответственно по построению.
В прямоугольном треугольнике АВН:
Sin(∠АВН) = АН/АВ =8/16 = 1/2. => ∠АВН = 30°
В прямоугольном треугольнике АРВ:
Sin(∠ВАР) = ВР/АВ =8√2/16 = √2/2. => ∠ВАР = 45°.