Найдите диаметр круга, если хорда длиной 2V6 см перпендикулярна диаметру и делит его на отрезки в отношении 2:3.
Объяснение:
ΔОМА=ΔОМВ как прямоугольные по двум катетам ОМ-общий, ОА=ОВ как катеты ⇒МА=МВ=2√6:2=√6 (см)
По т. об отрезках пересекающихся хорд АМ*МВ=СМ*МД
Т.к. СМ/МД=2/3 , то МД= . Получим √6*√6= СМ* .
СМ²=4, СМ=2 см .
Тогда МД=3 см , поэтому диаметр равен d= СМ+МД=2+3=5 (см).
d=5 см
=====================
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
ЗАДАЧА 1
1) треуг равнобедренный, где ав= вс=6
2) в равноб треуг медиана является бис. и высотой. потому углы авд и двс= 120/2=60 град.
3)сумма углов треуг =180 град. в треуг авс
∠а+∠с= 180-120=60 град.
4) ∠а=∠с, тк треуг равноб.
значит ∠а=∠с=60/2=30
5) рассмотрим треуг авд.
он прямоугольный. по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. вд= 6/2=3
ответ: 3
задача 2.
1) рассмотрим треуг сдв.
он прямоугольный, ∠с= 180-90-45=45.
значит треуг равнобедренный, где сд= вд
2)рассмотрим реуг асд
он прямоуг, катет, лежащий против угла в 30 град, равен половине гипотенузы. сд= 8/2=4.
3) сд= вд=4
ответ: 4
ЗАДАЧА 3
1) ТРЕУГ АВС ПРЯМОУГ. ЗНАЧИТ СВ= АВ/2= 10*2=20
2)сумма углов треуг =180, поэтому ∠в= 180-90-30=60
3) в треуг свд ∠с= 180-90-60=30
4) по теореме синусов вд/ sin 30 = вс/sin90
это вд/1/2= 10/1
2вд=10
вд=5
ответ: 5
Найдите диаметр круга, если хорда длиной 2V6 см перпендикулярна диаметру и делит его на отрезки в отношении 2:3.
Объяснение:
ΔОМА=ΔОМВ как прямоугольные по двум катетам ОМ-общий, ОА=ОВ как катеты ⇒МА=МВ=2√6:2=√6 (см)
По т. об отрезках пересекающихся хорд АМ*МВ=СМ*МД
Т.к. СМ/МД=2/3 , то МД= . Получим √6*√6= СМ* .
СМ²=4, СМ=2 см .
Тогда МД=3 см , поэтому диаметр равен d= СМ+МД=2+3=5 (см).
d=5 см
=====================
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
ЗАДАЧА 1
1) треуг равнобедренный, где ав= вс=6
2) в равноб треуг медиана является бис. и высотой. потому углы авд и двс= 120/2=60 град.
3)сумма углов треуг =180 град. в треуг авс
∠а+∠с= 180-120=60 град.
4) ∠а=∠с, тк треуг равноб.
значит ∠а=∠с=60/2=30
5) рассмотрим треуг авд.
он прямоугольный. по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. вд= 6/2=3
ответ: 3
задача 2.
1) рассмотрим треуг сдв.
он прямоугольный, ∠с= 180-90-45=45.
значит треуг равнобедренный, где сд= вд
2)рассмотрим реуг асд
он прямоуг, катет, лежащий против угла в 30 град, равен половине гипотенузы. сд= 8/2=4.
3) сд= вд=4
ответ: 4
ЗАДАЧА 3
1) ТРЕУГ АВС ПРЯМОУГ. ЗНАЧИТ СВ= АВ/2= 10*2=20
2)сумма углов треуг =180, поэтому ∠в= 180-90-30=60
3) в треуг свд ∠с= 180-90-60=30
4) по теореме синусов вд/ sin 30 = вс/sin90
это вд/1/2= 10/1
2вд=10
вд=5
ответ: 5