1. После построения MN получается треугольник MNE, подобный треугольнику CDE по первому признаку подобия (угол Е - общий, углы С и NME равны как соответственные углы при пересечении двух параллельных прямых CD и MN секущей СЕ). Поскольку треугольники подобны, то
<MNE = <CDE = 68°
2. Зная, что развернутый угол равен 180°, находим угол DNM:
<DNM = 180 - <MNE = 180 - 68 = 112°
3. Поскольку DM - биссектриса, то угол MDN = <CDE : 2 = 68 : 2 = 34°
4. Зная два угла треугольника DMN, находим неизвестный угол:
Проведём ОК⊥АС. ОК=r - радиус вписанной окружности. Площадь основания по формуле Герона: S=√(p(p-a)(p-b)(p-c)), где p=(a+b+c)/2. Подставив числовые значения длин сторон, получаем S=84 см². Также S=pr ⇔ r=S/p=2S/(a+b+c)=2·84/(13+14+15)=4 см. В прямоугольном тр-ке SOК SO=OК=4, значит SK=r√2=4√2 см. Площадь ΔASC: S(ASC)=AC·SK/2=15·4√2/2=30√2 см² - это ответ.
PS На рисунке изображён правильный треугольник АВС, а нам нужен разносторонний. Из нарисованного нужно взять саму пирамиду SABC и треугольник SOK. Всё.
на фото ответ
Объяснение:
второе задание:
1. После построения MN получается треугольник MNE, подобный треугольнику CDE по первому признаку подобия (угол Е - общий, углы С и NME равны как соответственные углы при пересечении двух параллельных прямых CD и MN секущей СЕ). Поскольку треугольники подобны, то
<MNE = <CDE = 68°
2. Зная, что развернутый угол равен 180°, находим угол DNM:
<DNM = 180 - <MNE = 180 - 68 = 112°
3. Поскольку DM - биссектриса, то угол MDN = <CDE : 2 = 68 : 2 = 34°
4. Зная два угла треугольника DMN, находим неизвестный угол:
<DMN = 180 - <MDN - <DNM = 180 - 34 - 112 = 34°
Площадь основания по формуле Герона: S=√(p(p-a)(p-b)(p-c)), где p=(a+b+c)/2.
Подставив числовые значения длин сторон, получаем S=84 см².
Также S=pr ⇔ r=S/p=2S/(a+b+c)=2·84/(13+14+15)=4 см.
В прямоугольном тр-ке SOК SO=OК=4, значит SK=r√2=4√2 см.
Площадь ΔASC: S(ASC)=AC·SK/2=15·4√2/2=30√2 см² - это ответ.
PS На рисунке изображён правильный треугольник АВС, а нам нужен разносторонний. Из нарисованного нужно взять саму пирамиду SABC и треугольник SOK. Всё.