Центр окружности, описанной около прямоугольного треугольника с вершинами а (9; 1); в (1; 5); с ( 1; 1) параллельным переносом на вектор а отображается в начало координат. найдите координаты вектора а.
1)Использована формула площади трапеции, свойство катета, лежащего против угла в 30 градусов, свойство средней линии трапеции 2)Пусть АВСД данная равнобедренная трапеция. угол В = 135 град.Тогда угол А=180-135=45 град., Пусть ВК и СМ высоты опущенные на основание.АК=1,4см, КД=3,4см. Рассмотрим треуг-к АВК. угол К=90.Тогда уголАВК=90-45=45. Значит треуг-кАВК- равнобедренный и АК=ВК = 1,4см. АК=МД=1,4см по свойству равнобедренной трапеции. Тогда КМ=КД-МД=3,4-1,4=2 см. ВС=КМ=2 см по свойству равнобедренной трапеции. АД=1,4+3,4=4,8 см Тогда площадь S=((a+b)/2)*h S=((2+4,8)/2)*1,4=3,4*1,4=4,76 (см^2)
Решение: 1) Проведём высоту. Получился прямоугольный треугольник. 2) Сумма углов в треугольнике равна 180°(градусов). Два угла нам уже даны: угол 60° и угол 90°. Найдём чему равен третий: 180°- (60°+90°)=30° 3) По свойству углов в прямоугольном треугольнике сторона (катет) лежащая напротив угла в 30° равна половине гипотенузы. Гипотенуза нам уже дана, она равна 2 см. Значит катет напротив угла в 30° равен 1 см. 4) Проведём ещё одну высоту в трапеции и получим точно такой же прямоугольный треугольник. Длина большого основания трапеции нам дана. Значит можем найти маленькое основание. Для этого вычтем из длины большого катеты (основания) треугольников: 7,5 см - 1 см - 1 см =5,5 см. 6) Теперь найдём периметр трапеции. Формула: Р=а+b+с+d Р= 5,5 см+ 2 см + 7,5 см + 2 см=17 см. ответ: 17 см.
2)Пусть АВСД данная равнобедренная трапеция. угол В = 135 град.Тогда угол А=180-135=45 град., Пусть ВК и СМ высоты опущенные на основание.АК=1,4см, КД=3,4см. Рассмотрим треуг-к АВК. угол К=90.Тогда уголАВК=90-45=45. Значит треуг-кАВК- равнобедренный и АК=ВК = 1,4см. АК=МД=1,4см по свойству равнобедренной трапеции. Тогда КМ=КД-МД=3,4-1,4=2 см. ВС=КМ=2 см по свойству равнобедренной трапеции. АД=1,4+3,4=4,8 см Тогда площадь S=((a+b)/2)*h S=((2+4,8)/2)*1,4=3,4*1,4=4,76 (см^2)
1) Проведём высоту. Получился прямоугольный треугольник.
2) Сумма углов в треугольнике равна 180°(градусов). Два угла нам уже даны: угол 60° и угол 90°. Найдём чему равен третий:
180°- (60°+90°)=30°
3) По свойству углов в прямоугольном треугольнике сторона (катет) лежащая напротив угла в 30° равна половине гипотенузы. Гипотенуза нам уже дана, она равна 2 см. Значит катет напротив угла в 30° равен 1 см.
4) Проведём ещё одну высоту в трапеции и получим точно такой же прямоугольный треугольник.
Длина большого основания трапеции нам дана. Значит можем найти маленькое основание. Для этого вычтем из длины большого катеты (основания) треугольников: 7,5 см - 1 см - 1 см =5,5 см.
6) Теперь найдём периметр трапеции. Формула: Р=а+b+с+d
Р= 5,5 см+ 2 см + 7,5 см + 2 см=17 см.
ответ: 17 см.