Трапеция равнобокая => ее боковые стороны равны. Опустим из концов меньшего основания перпендикуляры на большее основание и рассмотрим любой из образовавшихся треугольников (они равны). Это будет прямоугольный треугольник с двумя углами по 45°, гипотенуза которого равна 8 см. Либо через косинус 45°, либо через теорему Пифагора высчитываем, что катеты прямоугольника равны 4√2 см.
Теперь рассмотрим все большее основание. Отрезок между перпендикулярами равен меньшему основанию, т.е. 6 см, а два оставшихся отрезка равны по 4√2 см. Значит, большее основание = 6 см + 2* 4√2 см = 6 + 8√2 см
Диаметр чего? И поперечное сечение чего? Если поперечное сечение имеет форму круга, то у этого поперечного сечения есть диаметр. Поперечное сечение — сечение под прямым углом к продольной оси. Диаметр — это хорда (отрезок, соединяющий две точки) на окружности (сфере, поверхности шара) , и проходящий через центр этой окружности (сферы, шара) . Общего, как видите, эти два понятия имеют мало. Диаметр может быть не только у круга или окружности, но и у шара, сферы (это для следующего ответившего, слышал он, как говорится, звон, да не знает, где он...).
6 + 8√2 см
Объяснение:
Трапеция равнобокая => ее боковые стороны равны. Опустим из концов меньшего основания перпендикуляры на большее основание и рассмотрим любой из образовавшихся треугольников (они равны). Это будет прямоугольный треугольник с двумя углами по 45°, гипотенуза которого равна 8 см. Либо через косинус 45°, либо через теорему Пифагора высчитываем, что катеты прямоугольника равны 4√2 см.
Теперь рассмотрим все большее основание. Отрезок между перпендикулярами равен меньшему основанию, т.е. 6 см, а два оставшихся отрезка равны по 4√2 см. Значит, большее основание = 6 см + 2* 4√2 см = 6 + 8√2 см
Поперечное сечение — сечение под прямым углом к продольной оси.
Диаметр — это хорда (отрезок, соединяющий две точки) на окружности (сфере, поверхности шара) , и проходящий через центр этой окружности (сферы, шара) .
Общего, как видите, эти два понятия имеют мало. Диаметр может быть не только у круга или окружности, но и у шара, сферы (это для следующего ответившего, слышал он, как говорится, звон, да не знает, где он...).