Биссектриса MK угла CMD делит угол на две равные части. Т.к. сумма смежных углов AMD и CMD равна 180*, то 180*-48*=132*. Угол CMD равен 132 градуса. Угол KMC равен 132*:2=66*. Угол AME(точка добавилась с другой стороны биссектрисы, чтобы было, как назвать угол) и угол KMC вертикальные, а значит угол AME=66*. Т.к. MK||AD, накрест лежащие углы DME и MDF(Точка F образовалась на продолжении стороны AD со стороны точки D) равны, вследствие пересечения двух параллельных прямых секущей MD. Угол DME=MDF= 48*+66*=114*. Угол MDF смежный с углом D, а значит угол D=180*-114*=66*. А ещё угол DME и угол D соответственные а значит они равны. DME=D=66*
Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам. Докажем это. Рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.