Площадь боковой поверхности четырехугольной призмы равна произведению периметра основания на длину бокового ребра.
Так как четырёхугольная призма является правильной, то в её основании лежит квадрат, периметр которого равен:
P = 4 * 6 = 24 см.
Отсюда площадь боковой поверхности призмы:
Sб = 24 * 5 = 120 см²
ответ: А) 120 см².
Задание 2.
В прямоугольном треугольнике, образованном диагональю, боковым ребром и проекцией диагонали на плоскость основания, боковое ребро является катетом, лежащим против угла α, а диагональ d является гипотенузой.
Катет равен произведению гипотенузы на синус угла, противолежащего этому катету, то есть:
Боковое ребро = d sin α
ответ: Г) d sin α
Задание 3.
В основании правильной четырёхугольной пирамиды лежит квадрат, а проекцией вершины пирамиды является центр квадрата основания, в силу чего все 4 боковые грани по площади равны между собой.
Каждая из четырёх боковых граней представляет из себя равнобедренный треугольник со стороной основания 18 см и двумя боковыми сторонами по 15 см.
Находим по теореме Пифагора высоту этого треугольника:
h = √ [(15² - (18/2)²] = √ (225 - 81) = √144 = 12 см
Площадь одного треугольника - это одна-вторая произведения основания на высоту:
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.
Задание 1 - ответ: А) 120 см².
Задание 2 - ответ: Г) d sin α
Задание 3 - ответ: В) 432
Объяснение:
Задание 1.
Площадь боковой поверхности четырехугольной призмы равна произведению периметра основания на длину бокового ребра.
Так как четырёхугольная призма является правильной, то в её основании лежит квадрат, периметр которого равен:
P = 4 * 6 = 24 см.
Отсюда площадь боковой поверхности призмы:
Sб = 24 * 5 = 120 см²
ответ: А) 120 см².
Задание 2.
В прямоугольном треугольнике, образованном диагональю, боковым ребром и проекцией диагонали на плоскость основания, боковое ребро является катетом, лежащим против угла α, а диагональ d является гипотенузой.
Катет равен произведению гипотенузы на синус угла, противолежащего этому катету, то есть:
Боковое ребро = d sin α
ответ: Г) d sin α
Задание 3.
В основании правильной четырёхугольной пирамиды лежит квадрат, а проекцией вершины пирамиды является центр квадрата основания, в силу чего все 4 боковые грани по площади равны между собой.
Каждая из четырёх боковых граней представляет из себя равнобедренный треугольник со стороной основания 18 см и двумя боковыми сторонами по 15 см.
Находим по теореме Пифагора высоту этого треугольника:
h = √ [(15² - (18/2)²] = √ (225 - 81) = √144 = 12 см
Площадь одного треугольника - это одна-вторая произведения основания на высоту:
(18 * 12): 2 = 216 : 2 = 108 см².
Площадь 4-х таких треугольников:
108 * 4 = 432 см².
ответ: В) 432
Не верное утверждение Г.
Объяснение:
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.