Большим диагональным сечением правильной шестиугольной пирамиды является равносторонний треугольник, стороны которого равны 50дм. вычислите объем пирамиды.
Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.
Во второй окружности сумма противоположных углов вписанного четырехугольника PBCQ равна 180° (свойство), ⇒
∠РQC+<PBC=180° Следовательно, ∠АВС=∠PQA.
Так как ∠PQA=∠PAM, то ∠ABC=∠BAM. Они накрестлежащие, а равенство накрестлежащих углов при пересечении двух прямых секущей – признак параллельных прямых.⇒
Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.
Через т.А проведем касательную АМ
АР- хорда, ∠МАР =дуга АР:2 ( свойство угла между касательной и хордой)
Вписанный ∠АQP=дуга АР:2 ( свойство вписанного угла)⇒
∠МАР=∠АQP.
∠РQC +∠PQA=180°
Во второй окружности сумма противоположных углов вписанного четырехугольника PBCQ равна 180° (свойство), ⇒
∠РQC+<PBC=180° Следовательно, ∠АВС=∠PQA.
Так как ∠PQA=∠PAM, то ∠ABC=∠BAM. Они накрестлежащие, а равенство накрестлежащих углов при пересечении двух прямых секущей – признак параллельных прямых.⇒
МА║ВС , что и требовалось доказать.