Боковое ребро правильной треугольной пирамиды равно 10 и образует с плоскостью основания угол синус которого равен 0.8 найти высоту основания пирамиды с чертежом если можно
Пирамида правильная, значит в основании лежит правильный треугольник, а основание высоты пирамиды SO лежит в центре треугольника О. В правильном треугольнике высота его делится точкой О на отрезки в отношении 2:1, считая от вершины (по свойству медиан, а высота - это и медиана в правильном треугольнике). В прямоугольном треугольнике АSO АО/АS=Cos(<SAO). Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6. Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9. ответ: высота основания пирамиды равна 9.
СН - высота основания АВС.
sin∠DCO=0,8
ΔDCO - прямоугольный, ∠DOC=90° ⇒ DO=DC·sin∠DCO=10·0,8=8
CO=√(10²-8²)=6
CO=2/3·CH ⇒ CH=3/2·CO=3/2·6=9
В прямоугольном треугольнике АSO АО/АS=Cos(<SAO).
Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6.
Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9.
ответ: высота основания пирамиды равна 9.