Биссектрисы углов A и C треугольника ABC пересекаются в точке M. Найдите угол ABM, если угол MAC = 30 градусам, угол MCA = 20 градусам Биссектрисы углов A и C треугольника ABC пересекаются в точке M. Найдите угол ABM">
Проводим прямую. Отмечаем точку А - одну из вершин нашего треугольника на прямой, отмечаем отрезок, равный периметру треугольника - находим т. К, откладываем заданный угол с вершиной в т. А. Из т. А проводим перпендикуляр к первой проведенной прямой. Откладываем на нем отрезок, равный высоте - находим т. Я. От нее откладываем перпендикуляр к последней прямой, находим его пересечение с другой стороной угла. Нашли точку В. От точки К откладываем отрезок, равный АВ; находим точку С. Соединяем В и С. ABC -искомый треугольник.
ТОЛЬКО поставь свои знчения угол вда равен углу двс (так как вс и ад - параллельны)
сторона вс треугольника всд относится к стороне вд треугольника авд как сторона вд треугольника всд относится к стороне ад треугольника авд
треугольники подобны так как подобны попарно две стороны и одинаковы углы между ними
2)углы авс акс асд равны между собой и равны <1 так как опираются на одну дугу окружности углы ксв кав кса ква равны между собой и равны <2 так как опираются на одну дугу окружности и так как см - биссектриса угол кма равен 180 - <1 - <2 угол СМД равен 180 - угол кма = <1+<2 угол КСД равен = <1+<2 треугольник КСД - равнобедренный так как два угла равны
искомая сторона СД = МД = х по свойству секущей АД * ВД = СД*СД АД = х-7 ВД = х+9 (х-7)(х+9)=х^2 х^2+2x-63=х^2 x=63/2=31,5 - искомое расстояние
угол вда равен углу двс (так как вс и ад - параллельны)
сторона вс треугольника всд относится к стороне вд треугольника авд как
сторона вд треугольника всд относится к стороне ад треугольника авд
треугольники подобны так как подобны попарно две стороны и одинаковы углы между ними
2)углы авс акс асд равны между собой и равны <1 так как опираются на одну дугу окружности
углы ксв кав кса ква равны между собой и равны <2 так как опираются на одну дугу окружности и так как см - биссектриса
угол кма равен 180 - <1 - <2
угол СМД равен 180 - угол кма = <1+<2
угол КСД равен = <1+<2
треугольник КСД - равнобедренный так как два угла равны
искомая сторона СД = МД = х
по свойству секущей АД * ВД = СД*СД
АД = х-7
ВД = х+9
(х-7)(х+9)=х^2
х^2+2x-63=х^2
x=63/2=31,5 - искомое расстояние