Второй острый угол треугольника - 180-90-60=30°; В прямоугольном треугольнике, против угла в 30° лежит катет равный половине гипотенузы. 20/2=10 см; второй катет находим по т. Пифагора - √(20²-10²)=√300=10√3; площадь прямоугольного треугольника - произведение длин катетов деленное на два; 10*10√3/2=50√3 ед².
Второй После того как нашли длину катета можно сразу найти площадь треугольника через две стороны и угол между ними. Одна сторона - 20 (гипотенуза), другая сторона - 10 (катет лежащий против угла 30°). Значит угол между катетом и гипотенузой - 60°; площадь треугольника равна произведению длин сторон умноженную на синус угла между ними деленное на два. Синус 60°=√3/2 - табличное значение. площадь - 10*20*√3/(2*2)=50√3 ед².
В прямоугольном треугольнике, против угла в 30° лежит катет равный половине гипотенузы.
20/2=10 см;
второй катет находим по т. Пифагора - √(20²-10²)=√300=10√3;
площадь прямоугольного треугольника - произведение длин катетов деленное на два;
10*10√3/2=50√3 ед².
Второй
После того как нашли длину катета можно сразу найти площадь треугольника через две стороны и угол между ними. Одна сторона - 20 (гипотенуза), другая сторона - 10 (катет лежащий против угла 30°). Значит угол между катетом и гипотенузой - 60°;
площадь треугольника равна произведению длин сторон умноженную на синус угла между ними деленное на два. Синус 60°=√3/2 - табличное значение.
площадь - 10*20*√3/(2*2)=50√3 ед².
Тут возможны два случая
1) a>b. Тогда a=b+15. По теореме о сумме углов треугольника
a+a+b=180°
b+15°+b+15°+b=180°
3b+30°=180°
Поделим обе части на 3.
b+10°=60°
b=60°-10°
b=50°
a=50°+15°
a=65°
2) b>a. Тогда b=a+15. По теореме о сумме углов треугольника
a+a+b=180°
a+a+a+15°=180°
3a+15°=180°
Поделим обе части на 3.
a+5°=60°
a=60°-5°
a=55°
b=55°+15°
b=70°
ответ: два случая
1) b=50°, a=65°, a=65°
2) b=70°, a=55°, a=55°.