Пусть a - основание, h - высота к основанию, b - боковая сторона, H - высота к ней. Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения. 1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О. 2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника. 3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α; 4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1. 5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника. Это всё.
1. Всякая плоскость пересекает шар по окружности. Расстояние от центра шара до плоскости - длина перпендикулярного к ней отрезка. Следовательно, этот отрезок перпендикулярен и радиусу окружности, отсекаемой плоскостью. Расстояние от центра до плоскости и радиус r окружности - катеты прямоугольного треугольника, радиус R шара - его гипотенуза. По т.Пифагора r=√(13²-12²)=5 см. Длина окружности 2pr=10π см
2. Вершины треугольника, которые лежат в сфере, являются вершинами треугольника, вписанного в окружность, образованную плоскостью, проходящей на расстоянии 5 см от центра шара. Т.к. треугольник - прямоугольный, центр окружности лежит на середине гипотенузы. ⇒ r=24:2=12 см. Радиус r и расстояние от центра сферы до центра окружности сечения - катеты прямоугольного треугольника, радиус R сферы - его гипотенуза. R= √(5²+12²)=13 см
Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения.
1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О.
2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника.
3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α;
4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1.
5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника.
Это всё.
1. Всякая плоскость пересекает шар по окружности. Расстояние от центра шара до плоскости - длина перпендикулярного к ней отрезка. Следовательно, этот отрезок перпендикулярен и радиусу окружности, отсекаемой плоскостью. Расстояние от центра до плоскости и радиус r окружности - катеты прямоугольного треугольника, радиус R шара - его гипотенуза. По т.Пифагора r=√(13²-12²)=5 см. Длина окружности 2pr=10π см
2. Вершины треугольника, которые лежат в сфере, являются вершинами треугольника, вписанного в окружность, образованную плоскостью, проходящей на расстоянии 5 см от центра шара. Т.к. треугольник - прямоугольный, центр окружности лежит на середине гипотенузы. ⇒ r=24:2=12 см. Радиус r и расстояние от центра сферы до центра окружности сечения - катеты прямоугольного треугольника, радиус R сферы - его гипотенуза. R= √(5²+12²)=13 см